ISCE_INSAR/contrib/PyCuAmpcor/src/cuDeramp.cu

347 lines
11 KiB
Plaintext

/*
* cuDeramp.cu
* Derampling a batch of 2D complex images with GPU
*
* Method 1: use Fortran code algorithm
* Method 2: use phase gradient
* Method 0 or else: no deramping
*
* v1.0 2/1/2017, Lijun Zhu
*/
#include "cuArrays.h"
#include "float2.h"
#include <cfloat>
#include "cudaError.h"
#include "cudaUtil.h"
#include "cuAmpcorUtil.h"
#include <iostream>
#include <iomanip>
#include <cmath>
#include <limits>
// note by Lijun
// cuda does not have a good support on volatile vector struct, e.g. float2
// I have to use regular float type for shared memory (volatile)
inline static __device__ void copyToShared(volatile float *s, const int i, const float2 x, const int block)
{ s[i] = x.x; s[i+block] = x.y; }
inline static __device__ void copyFromShared(float2 &x, volatile float *s, const int i, const int block)
{ x.x = s[i]; x.y = s[i+block]; }
inline static __device__ void addInShared(volatile float *s, const int i, const int j, const int block)
{ s[i] += s[i+j]; s[i+block] += s[i+j+block];}
__device__ void debugPhase(float2 c1, float2 c2)
{
float2 cp = complexMulConj(c1, c2);
float phase = atan2f(cp.y, cp.x);
}
template <const int nthreads>
__device__ float sumReduceBlock(float sum, volatile float *shmem)
{
const int tid = threadIdx.x;
shmem[tid] = sum;
__syncthreads();
if (nthreads >=1024) { if (tid < 512) { shmem[tid] = sum = sum + shmem[tid + 512]; } __syncthreads(); }
if (nthreads >= 512) { if (tid < 256) { shmem[tid] = sum = sum + shmem[tid + 256]; } __syncthreads(); }
if (nthreads >= 256) { if (tid < 128) { shmem[tid] = sum = sum + shmem[tid + 128]; } __syncthreads(); }
if (nthreads >= 128) { if (tid < 64) { shmem[tid] = sum = sum + shmem[tid + 64]; } __syncthreads(); }
if (tid < 32)
{
shmem[tid] = sum = sum + shmem[tid + 32];
shmem[tid] = sum = sum + shmem[tid + 16];
shmem[tid] = sum = sum + shmem[tid + 8];
shmem[tid] = sum = sum + shmem[tid + 4];
shmem[tid] = sum = sum + shmem[tid + 2];
shmem[tid] = sum = sum + shmem[tid + 1];
}
__syncthreads();
return shmem[0];
}
template<const int nthreads>
__global__ void cuDerampMethod2_kernel(float2 *images, const int imageNX, const int imageNY,
const int imageSize, const int nImages, const float normCoefX, const float normCoefY)
{
__shared__ float shmem[nthreads];
const int tid = threadIdx.x;
const int bid = blockIdx.x;
//printf("bid %d\n", bid);
float2 *imageD = images + bid*imageSize;
int pixelIdx, pixelIdxX, pixelIdxY;
float phaseDiffY = 0.0f;
for (int i = tid; i < imageSize; i += nthreads) {
pixelIdx = i;
pixelIdxY = pixelIdx % imageNY;
if(pixelIdxY < imageNY -1)
{
phaseDiffY += complexArg(complexMulConj(imageD[pixelIdx], imageD[pixelIdx+1]));
}
}
phaseDiffY=sumReduceBlock<nthreads>(phaseDiffY, shmem);
phaseDiffY*=normCoefY;
float phaseDiffX = 0.0f;
for (int i = tid; i < imageSize; i += nthreads) {
pixelIdx = i;
pixelIdxX = pixelIdx / imageNY;
if(pixelIdxX < imageNX -1)
{
phaseDiffX += complexArg(complexMulConj(imageD[pixelIdx], imageD[pixelIdx+imageNY]));
}
}
phaseDiffX=sumReduceBlock<nthreads>(phaseDiffX, shmem);
phaseDiffX*=normCoefX;
for (int i = tid; i < imageSize; i += nthreads)
{
int pixelIdx = i;
pixelIdxX = pixelIdx/imageNY;
pixelIdxY = pixelIdx%imageNY;
float phase = pixelIdxX*phaseDiffX + pixelIdxY*phaseDiffY;
imageD[pixelIdx] *= make_float2(cosf(phase), sinf(phase));
}
}
void cuDerampMethod2(cuArrays<float2> *images, cudaStream_t stream)
{
const dim3 grid(images->count);
const int nthreads=512;
const int imageSize = images->width*images->height;
const float normCoefY = 1.0f/((images->width-1)*images->height);
const float normCoefX = 1.0f/((images->height-1)*images->width);
cuDerampMethod2_kernel<nthreads> <<<grid, 512,0,stream>>>
(images->devData, images->height, images->width, imageSize, images->count, normCoefX, normCoefY);
getLastCudaError("cuDerampMethod2 kernel error\n");
}
template <const int nthreads>
__device__ void complexSumReduceBlock(float2& sum, volatile float *shmem)
{
const int tid = threadIdx.x;
copyToShared(shmem, tid, sum, nthreads);
__syncthreads();
if (nthreads >=1024) { if (tid < 512) { addInShared(shmem, tid, 512, nthreads); } __syncthreads(); }
if (nthreads >= 512) { if (tid < 256) { addInShared(shmem, tid, 256, nthreads); } __syncthreads(); }
if (nthreads >= 256) { if (tid < 128) { addInShared(shmem, tid, 128, nthreads); } __syncthreads(); }
if (nthreads >= 128) { if (tid < 64) { addInShared(shmem, tid, 64, nthreads); } __syncthreads(); }
if (tid < 32)
{
addInShared(shmem, tid, 32, nthreads);
addInShared(shmem, tid, 16, nthreads);
addInShared(shmem, tid, 8, nthreads);
addInShared(shmem, tid, 4, nthreads);
addInShared(shmem, tid, 2, nthreads);
addInShared(shmem, tid, 1, nthreads);
}
__syncthreads();
copyFromShared(sum, shmem, 0, nthreads);
}
// block id is the image index
// thread id ranges all pixels in one image
template<const int nthreads>
__global__ void cuDerampMethod1_kernel(float2 *images, const int imageNX, int const imageNY,
const int imageSize, const int nImages, const float normCoef)
{
__shared__ float shmem[2*nthreads];
int pixelIdx, pixelIdxX, pixelIdxY;
const int bid = blockIdx.x;
if(bid >= nImages) return;
float2 *image = images+ bid*imageSize;
const int tid = threadIdx.x;
float2 phaseDiffY = make_float2(0.0f, 0.0f);
for (int i = tid; i < imageSize; i += nthreads) {
pixelIdxY = i % imageNY;
if(pixelIdxY < imageNY -1) {
pixelIdx = i;
float2 cprod = complexMulConj( image[pixelIdx], image[pixelIdx+1]);
phaseDiffY += cprod;
}
}
complexSumReduceBlock<nthreads>(phaseDiffY, shmem);
//phaseDiffY *= normCoef;
float phaseY=atan2f(phaseDiffY.y, phaseDiffY.x);
//__syncthreads();
float2 phaseDiffX = make_float2(0.0f, 0.0f);
for (int i = tid; i < imageSize; i += nthreads) {
pixelIdxX = i / imageNY;
if(pixelIdxX < imageNX -1) {
pixelIdx = i;
float2 cprod = complexMulConj(image[i], image[i+imageNY]);
phaseDiffX += cprod;
}
}
complexSumReduceBlock<nthreads>(phaseDiffX, shmem);
//phaseDiffX *= normCoef;
float phaseX = atan2f(phaseDiffX.y, phaseDiffX.x); //+FLT_EPSILON
for (int i = tid; i < imageSize; i += nthreads)
{
pixelIdxX = i%imageNY;
pixelIdxY = i/imageNY;
float phase = pixelIdxX*phaseX + pixelIdxY*phaseY;
float2 phase_factor = make_float2(cosf(phase), sinf(phase));
image[i] *= phase_factor;
}
}
void cuDerampMethod1(cuArrays<float2> *images, cudaStream_t stream)
{
const dim3 grid(images->count);
//int nthreads;
const int imageSize = images->width*images->height;
const float invSize = 1.0f/imageSize;
if(imageSize <=64) {
cuDerampMethod1_kernel<64> <<<grid, 64, 0, stream>>>
(images->devData, images->height, images->width,
imageSize, images->count, invSize); }
else if(imageSize <=128) {
cuDerampMethod1_kernel<128> <<<grid, 128, 0, stream>>>
(images->devData, images->height, images->width,
imageSize, images->count, invSize); }
else if(imageSize <=256) {
cuDerampMethod1_kernel<256> <<<grid, 256, 0, stream>>>
(images->devData, images->height, images->width,
imageSize, images->count, invSize); }
else {
cuDerampMethod1_kernel<512> <<<grid, 512, 0, stream>>>
(images->devData, images->height, images->width,
imageSize, images->count, invSize); }
getLastCudaError("cuDerampMethod1 kernel error\n");
}
/*
static inline double complexAbs (double2 a)
{
double r = sqrt(a.x*a.x + a.y*a.y);
return r;
}*/
void cpuDerampMethod3(cuArrays<float2> *imagesD, cudaStream_t stream)
{
float2 *images = (float2 *) malloc(imagesD->getByteSize());
float2 phaseDiffX, phaseDiffY;
int idxPixel;
cudaMemcpyAsync(images, imagesD->devData, imagesD->getByteSize(), cudaMemcpyDeviceToHost, stream);
int count = imagesD->count;
int height = imagesD->height;
int width = imagesD->width;
float2 cprod;
float phaseX, phaseY;
for (int icount = 0; icount < count; icount ++)
{
phaseDiffY = make_float2(0.0f, 0.0f);
for (int i=0; i<height; i++)
{
for(int j=0; j<width-1; j++)
{
idxPixel = icount*width*height + i*width + j;
cprod = complexMulConj(images[idxPixel], images[idxPixel+1]);
phaseDiffY.x += (cprod.x);
phaseDiffY.y += (cprod.y);
}
}
//phaseDiffY /= height*(width-1);
if (complexAbs(phaseDiffY) < 1.e-5) {
phaseY = 0.0;
}
else {
phaseY = atan2(phaseDiffY.y, phaseDiffY.x);
}
phaseDiffX = make_float2(0.0f, 0.0f);
for (int j=0; j<width; j++)
{
for(int i=0; i<height-1; i++) {
idxPixel = icount*width*height + i*width + j;
cprod = complexMulConj(images[idxPixel], images[idxPixel+width]);
phaseDiffX.x += (cprod.x);
phaseDiffX.y += (cprod.y);;
}
}
//phaseDiffX /= (height-1)*width;
if (complexAbs(phaseDiffX) < 1.e-5) {
phaseX = 0.0;
}
else {
phaseX = atan2(phaseDiffX.y, phaseDiffX.x);
}
//printf("cpu deramp %d (%g,%g) (%g,%g)\n", icount, phaseDiffX.x, phaseDiffX.y, phaseDiffY.x, phaseDiffY.y);
/*
std::setprecision(12);
std::cout << "cpu " << icount << " " <<
std::setprecision(std::numeric_limits<long double>::digits10 + 1) << phaseX <<
" " << std::setprecision(std::numeric_limits<long double>::digits10 + 1) << phaseY << std::endl;
std::cout << "cpu " << phaseDiffX.x << " " << phaseDiffX.y << std::endl;
std::cout << "cpu " << phaseDiffY.x << " " << phaseDiffY.y << std::endl;
*/
for(int i=0; i<height; i++)
{
for(int j=0; j<width; j++)
{
idxPixel = icount*width*height + i*width + j;
float phase = phaseX*i + phaseY*j;
images[idxPixel]*=make_float2(cos(phase), sin(phase));
}
}
}
cudaMemcpyAsync(imagesD->devData, images, imagesD->getByteSize(), cudaMemcpyHostToDevice, stream);
free(images);
}
void cuDeramp(int method, cuArrays<float2> *images, cudaStream_t stream)
{
switch(method) {
case 3:
cpuDerampMethod3(images, stream);
case 1:
cuDerampMethod1(images, stream);
break;
case 2:
cuDerampMethod2(images, stream);
break;
default:
break;
}
}