ISCE_INSAR/contrib/PyCuAmpcor/examples/grossOffsets.py

408 lines
18 KiB
Python
Executable File

#!/usr/bin/env python3
# Generate pixel offsets based on Antarctica velocity model (MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 doi:https://doi.org/10.5067/D7GK8F5J8M8R)
# Author: Minyan Zhong
import os
import argparse
import isce
import isceobj
import gdal
import pyproj
import numpy as np
import matplotlib.pyplot as plt
EXAMPLE = '''
grossOffsets.py --model_file antarctica_ice_velocity_450m_v2.nc --lon lon.rdr --lat lat.rdr --los los.rdr --los_scheme bil --ww 64 --wh 64 --sw 10 --sh 10 --mm 50 --kw 32 --kh 32 --startpixeldw 50 --startpixelac 50 --rangePixelSize 0.930 --azimuthPixelSize 2.286 --interval 1
'''
def createParser():
'''
Command line parser.
'''
parser = argparse.ArgumentParser(description='Generate pixel offsets (integer pixel) based on Antarctica ice velocity model (MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 doi:https://doi.org/10.5067/D7GK8F5J8M8R)', formatter_class=argparse.RawTextHelpFormatter, epilog=EXAMPLE)
# path to antarctica velocity model
parser.add_argument('--model_file', type=str, dest='model_file', required=True)
# lat, lon, los
parser.add_argument('--lat', type=str, dest='lat', required=True,
help='latitude file')
parser.add_argument('--lon', type=str, dest='lon', required=True,
help='longitude fie')
parser.add_argument('--los', type=str, dest='los', required=True,
help='two bands raster data in float. band1: incidence angle; bands: satellite flight direction (ISCE2 convention)')
parser.add_argument('--los_scheme', type=str, dest='los_scheme', required=True,
help='interleave scheme of los (bil, bsq or bip)')
# window size settings
parser.add_argument('--ww', type=int, dest='winwidth', default=64,
help='Window width (default: %(default)s).')
parser.add_argument('--wh', type=int, dest='winhgt', default=64,
help='Window height (default: %(default)s).')
parser.add_argument('--sw', type=int, dest='srcwidth', default=20,
help='Half search range along width, (default: %(default)s, recommend: 4-32).')
parser.add_argument('--sh', type=int, dest='srchgt', default=20,
help='Half search range along height (default: %(default)s, recommend: 4-32).')
parser.add_argument('--kw', type=int, dest='skipwidth', default=64,
help='Skip across (default: %(default)s).')
parser.add_argument('--kh', type=int, dest='skiphgt', default=64,
help='Skip down (default: %(default)s).')
# determine the number of windows
# either specify the starting pixel and the number of windows,
# or by setting them to -1, let the script to compute these parameters
parser.add_argument('--mm', type=int, dest='margin', default=0,
help='Margin (default: %(default)s).')
parser.add_argument('--spa','--startpixelac', dest='startpixelac', type=int, default=-1, help='Starting Pixel across of the reference image(default: %(default)s to be determined by margin and search range).')
parser.add_argument('--spd','--startpixeldw', dest='startpixeldw', type=int, default=-1, help='Starting Pixel down of the reference image (default: %(default)s).')
parser.add_argument('--aps', '--azimuthPixelSize', dest='azimuthPixelSize', type=float, required=True, help='azimuth pixel size')
parser.add_argument('--rps', '--rangePixelSize', dest='rangePixelSize', type=float, required=True, help='range pixel size')
parser.add_argument('--interval', dest='interval', type=float, required=True, help='interval between reference and secondary scene (unit: day)')
parser.add_argument('--outdir', dest='outdir', type=str, default='.', help='output directory')
parser.add_argument('--outname', dest='outname', type=str, default='grossOffsets.bin', help='output name of gross pixel offsets (integer)')
return parser
def cmdLineParse(iargs = None):
parser = createParser()
inps = parser.parse_args(args=iargs)
return inps
class grossOffsets:
def __init__(self, inps):
model_path = inps.model_file
self.model_file = model_path
self.latfile = inps.lat
self.lonfile = inps.lon
self.losfile = inps.los
ds = gdal.Open(self.losfile)
self.XSize = ds.RasterXSize
self.YSize = ds.RasterYSize
ds = None
self.los_scheme = inps.los_scheme.lower()
assert(self.los_scheme in ['bil','bsq', 'bip']), print('interleave scheme of los')
self.margin = inps.margin
self.winSizeHgt = inps.winhgt
self.winSizeWidth = inps.winwidth
self.searchSizeHgt = inps.srchgt
self.searchSizeWidth = inps.srcwidth
self.skipSizeHgt = inps.skiphgt
self.skipSizeWidth = inps.skipwidth
self.startpixelac = inps.startpixelac if inps.startpixelac != -1 else self.margin + self.searchSizeWidth
self.startpixeldw = inps.startpixeldw if inps.startpixeldw != -1 else self.margin + self.searchSizeHgt
self.azPixelSize = inps.azimuthPixelSize
self.rngPixelSize = inps.rangePixelSize
self.interval = inps.interval
self.outdir = inps.outdir
self.outname = inps.outname
self.get_veloData()
self.vProj = pyproj.Proj('+init=EPSG:3031')
def get_veloData(self):
assert os.path.exists(self.model_file), print("Please download MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 at https://nsidc.org/data/NSIDC-0484/versions")
data_read = 0
ds = gdal.Open("NETCDF:{0}:{1}".format(self.model_file, 'VX'))
self.vx = ds.ReadAsArray()
ds = gdal.Open("NETCDF:{0}:{1}".format(self.model_file, 'VY'))
self.vy = ds.ReadAsArray()
self.vx = np.flipud(self.vx)
self.vy = np.flipud(self.vy)
self.v = np.sqrt(np.multiply(self.vx,self.vx)+np.multiply(self.vy,self.vy))
self.model_spacing = 450
self.x0 = np.arange(-2800000,2800000,step=450)
self.y0 = np.arange(-2800000,2800000,step=450)+200
def runGrossOffsets(self):
## Step 0: Set up projection transformers for ease of use
self.llhProj = pyproj.Proj('+init=EPSG:4326')
self.xyzProj = pyproj.Proj('+init=EPSG:4978')
# From xy to lat lon.
refPt = self.vProj(0.0, 0.0, inverse=True)
### Step 2: Cut the data
print('Extract the data to this radar scene...')
# The following code is to be consistent with "get_offset_geometry" in dense_offset.py
numWinDown = (self.YSize - self.margin*2 - self.searchSizeHgt*2 - self.winSizeHgt) // self.skipSizeHgt
numWinAcross = (self.XSize - self.margin*2 - self.searchSizeWidth*2 - self.winSizeWidth) // self.skipSizeWidth
lat = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float64)
lon = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float64)
inc = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float32)
azi = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float32)
self.centerOffsetHgt = self.winSizeHgt//2-1
self.centerOffsetWidth = self.winSizeWidth//2-1
print("Number of winows in down direction, Number of window in across direction: ")
print(numWinDown, numWinAcross)
cut_vx = np.zeros(shape=(numWinDown,numWinAcross))
cut_vy = np.zeros(shape=(numWinDown,numWinAcross))
cut_v = np.zeros(shape=(numWinDown,numWinAcross))
pixel = np.zeros(shape=(numWinDown,numWinAcross))
line = np.zeros(shape=(numWinDown,numWinAcross))
for iwin in range(numWinDown):
# Need to calculate lat lon in the interior mode.
print('Processing line: ',iwin, 'out of', numWinDown)
down = self.margin + self.skipSizeHgt * iwin + self.centerOffsetHgt
off = down*self.XSize
across_indices = self.margin + np.arange(numWinAcross)*self.skipSizeWidth + self.centerOffsetWidth
# latitude
latline = np.memmap(filename=self.latfile,dtype='float64',offset=8*off,shape=(self.XSize))
# longitude
lonline = np.memmap(filename=self.lonfile,dtype='float64',offset=8*off,shape=(self.XSize))
# incidence angle and satellite flight direction
# bil
if self.los_scheme == "bil":
off2 = down * self.XSize * 2
losline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize*2))
incline = losline[0:self.XSize]
aziline = losline[self.XSize:self.XSize*2]
# bsq
elif self.los_scheme == 'bsq':
off2 = self.YSize * self.XSize + down * self.XSize
incline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off,shape=(self.XSize))
aziline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize))
# bip
else:
off2 = down * self.XSize * 2
losline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize*2))
incline = losline[0:self.XSize*2:2]
aziline = losline[1:self.XSize*2:2]
# Subset the line
lat[iwin,:] = latline[across_indices]
lon[iwin,:] = lonline[across_indices]
inc[iwin,:] = incline[across_indices]
azi[iwin,:] = aziline[across_indices]
#print(iwin,'lat: ',lat[iwin,:])
#print(iwin,'lon: ',lon[iwin,:])
#print(iwin,'inc: ',inc[iwin,:])
#print(iwin,'azi: ',azi[iwin,:])
#### Look up in MEaSUREs InSAR-Based Antarctica Ice Velocity Map
# Convert lat lon to grid coordinates in polar stereographic projection.
xyMap = pyproj.transform(self.llhProj, self.vProj, lon[iwin,:], lat[iwin,:])
# Extract the values in the velocity model.
model_spacing = self.model_spacing
pixel[iwin,:] = np.clip((xyMap[0]-self.x0[0])/model_spacing, 0, self.vx.shape[1]-1)
line[iwin,:] = np.clip((xyMap[1]-self.y0[0])/model_spacing, 0, self.vx.shape[0]-1)
pixel_int = pixel[iwin,:].astype(int)
line_int = line[iwin,:].astype(int)
cut_vx[iwin,:] = self.vx[line_int,pixel_int]
cut_vy[iwin,:] = self.vy[line_int,pixel_int]
cut_v = np.sqrt(np.multiply(cut_vx,cut_vx),np.multiply(cut_vy,cut_vy))
valid = np.logical_and(inc!=0, cut_v!=0)
### Mask out invalid values ###
# 1. Mask out invalid values at margin.
cut_vx[inc==0] = np.nan
cut_vy[inc==0] = np.nan
# Get Interpolated speed.
cut_v = np.sqrt(np.multiply(cut_vx,cut_vx),np.multiply(cut_vy,cut_vy))
print("The speed matrix")
print(cut_v)
print("The shape of speed matrix")
print(cut_v.shape)
### Step 3: Convert XY velocity to EN velocity (clockwise rotation)
print('Coverting XY to EN...')
lonr = np.radians(lon - refPt[0])
cut_ve = np.multiply(cut_vx, np.cos(lonr)) - np.multiply(cut_vy, np.sin(lonr))
cut_vn = np.multiply(cut_vy, np.cos(lonr)) + np.multiply(cut_vx, np.sin(lonr))
print('Polar stereographic velocity: ', [cut_vx, cut_vy])
print('Local ENU velocity: ', [cut_ve, cut_vn])
####Step 4: Convert EN velocity to rng and azimuth
#Local los and azi vector in ENU coordinate
print(' Coverting EN to rdr...')
incr = np.radians(inc)
azir = np.radians(azi)
losr = np.radians(azi-90.0)
losenu=[ np.multiply(np.sin(incr),np.cos(losr)),
np.multiply(np.sin(incr),np.sin(losr)),
-np.cos(incr) ]
azienu=[ np.cos(azir),
np.sin(azir),
0.0 ]
# unit: pixel per day
grossRangeOffset = (self.interval/365.25) * (cut_ve * losenu[0] + cut_vn * losenu[1])/ self.rngPixelSize
grossAzimuthOffset = (self.interval/365.25) * (cut_ve * azienu[0] + cut_vn * azienu[1]) / self.azPixelSize
# Mask out invalid values at margin.
grossRangeOffset[inc==0] = np.nan
grossAzimuthOffset[inc==0] = np.nan
print('Gross azimuth offset: ', grossAzimuthOffset)
print('Gross range offset: ', grossRangeOffset)
print('Shape of gross offsets: ', grossRangeOffset.shape)
### Show FLOAT results ###
fig=plt.figure(21,figsize=(9,9))
ax = fig.add_subplot(121)
ax.set_title('gross azimuth offset',fontsize=15)
cax = ax.imshow(grossAzimuthOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
ax = fig.add_subplot(122)
ax.set_title('gross range offset',fontsize=15)
cax = ax.imshow(grossRangeOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
figname = os.path.join(self.outdir,'pixel_offsets.png')
fig.savefig(figname,format='png')
plt.close()
# Save grossRangeOffset and grossAzimuthOffset as ISCE supported images.
# Range
rangeFileName = os.path.join(self.outdir, 'grossRange.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(rangeFileName, xsize=grossRangeOffset.shape[1], ysize=grossRangeOffset.shape[0], bands=1, eType=gdal.GDT_Float32)
dst_ds.GetRasterBand(1).WriteArray(grossRangeOffset,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('FLOAT')
outImage.setFilename(rangeFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossRangeOffset.shape[0])
outImage.setWidth(grossRangeOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Azimuth
azimuthFileName = os.path.join(self.outdir, 'grossAzimuth.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(azimuthFileName, xsize=grossAzimuthOffset.shape[1], ysize=grossAzimuthOffset.shape[0], bands=1, eType=gdal.GDT_Float32)
dst_ds.GetRasterBand(1).WriteArray(grossAzimuthOffset,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('FLOAT')
outImage.setFilename(azimuthFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossAzimuthOffset.shape[0])
outImage.setWidth(grossAzimuthOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
### Round to integer ###
grossAzimuthOffset_int = np.rint(grossAzimuthOffset).astype(np.int32)
grossRangeOffset_int = np.rint(grossRangeOffset).astype(np.int32)
### Show Integer results ###
fig=plt.figure(22,figsize=(9,9))
ax = fig.add_subplot(121)
ax.set_title('gross azimuth offset (int)',fontsize=15)
cax = ax.imshow(grossAzimuthOffset_int,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
ax = fig.add_subplot(122)
ax.set_title('gross range offset (int)',fontsize=15)
cax = ax.imshow(grossRangeOffset_int,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
figname = os.path.join(self.outdir,'pixel_offsets_int.png')
fig.savefig(figname,format='png')
plt.close()
# Save grossRangeOffset and grossAzimuthOffset as ISCE supported images.
# Range
rangeFileName = os.path.join(self.outdir, 'grossRange_int.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(rangeFileName, xsize=grossRangeOffset.shape[1], ysize=grossRangeOffset.shape[0], bands=1, eType=gdal.GDT_Int32)
dst_ds.GetRasterBand(1).WriteArray(grossRangeOffset_int,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('INT')
outImage.setFilename(rangeFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossRangeOffset.shape[0])
outImage.setWidth(grossRangeOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Azimuth
azimuthFileName = os.path.join(self.outdir, 'grossAzimuth_int.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(azimuthFileName, xsize=grossAzimuthOffset.shape[1], ysize=grossAzimuthOffset.shape[0], bands=1, eType=gdal.GDT_Int32)
dst_ds.GetRasterBand(1).WriteArray(grossAzimuthOffset_int,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('INT')
outImage.setFilename(azimuthFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossAzimuthOffset.shape[0])
outImage.setWidth(grossAzimuthOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Round to integer and write to raw binary file
numTotal = numWinDown * numWinAcross
grossOffsets_int = np.hstack((grossAzimuthOffset_int.reshape(numTotal,1), grossRangeOffset_int.reshape(numTotal,1)))
print("grossOffsets: \n", grossOffsets_int, grossOffsets_int.dtype)
grossOffsets_int.tofile(os.path.join(self.outdir, self.outname))
return 0
def main(iargs=None):
inps = cmdLineParse(iargs)
grossObj = grossOffsets(inps)
grossObj.runGrossOffsets()
if __name__=='__main__':
main()