ISCE_INSAR/components/isceobj/Alos2Proc/runBaseline.py

230 lines
12 KiB
Python

#
# Author: Cunren Liang
# Copyright 2015-present, NASA-JPL/Caltech
#
import os
import glob
import logging
import datetime
import numpy as np
import isceobj
import isceobj.Sensor.MultiMode as MultiMode
from isceobj.Planet.Planet import Planet
from isceobj.Alos2Proc.Alos2ProcPublic import runCmd
from isceobj.Alos2Proc.Alos2ProcPublic import getBboxRdr
from isceobj.Alos2Proc.Alos2ProcPublic import getBboxGeo
logger = logging.getLogger('isce.alos2insar.runBaseline')
def runBaseline(self):
'''compute baseline
'''
catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
self.updateParamemetersFromUser()
referenceTrack = self._insar.loadTrack(reference=True)
secondaryTrack = self._insar.loadTrack(reference=False)
##################################################
#2. compute burst synchronization
##################################################
#burst synchronization may slowly change along a track as a result of the changing relative speed of the two flights
#in one frame, real unsynchronized time is the same for all swaths
unsynTime = 0
#real synchronized time/percentage depends on the swath burst length (synTime = burstlength - abs(unsynTime))
#synTime = 0
synPercentage = 0
numberOfFrames = len(self._insar.referenceFrames)
numberOfSwaths = self._insar.endingSwath - self._insar.startingSwath + 1
for i, frameNumber in enumerate(self._insar.referenceFrames):
for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)):
referenceSwath = referenceTrack.frames[i].swaths[j]
secondarySwath = secondaryTrack.frames[i].swaths[j]
#using Piyush's code for computing range and azimuth offsets
midRange = referenceSwath.startingRange + referenceSwath.rangePixelSize * referenceSwath.numberOfSamples * 0.5
midSensingStart = referenceSwath.sensingStart + datetime.timedelta(seconds = referenceSwath.numberOfLines * 0.5 / referenceSwath.prf)
llh = referenceTrack.orbit.rdr2geo(midSensingStart, midRange)
slvaz, slvrng = secondaryTrack.orbit.geo2rdr(llh)
###Translate to offsets
#note that secondary range pixel size and prf might be different from reference, here we assume there is a virtual secondary with same
#range pixel size and prf
rgoff = ((slvrng - secondarySwath.startingRange) / referenceSwath.rangePixelSize) - referenceSwath.numberOfSamples * 0.5
azoff = ((slvaz - secondarySwath.sensingStart).total_seconds() * referenceSwath.prf) - referenceSwath.numberOfLines * 0.5
#compute burst synchronization
#burst parameters for ScanSAR wide mode not estimed yet
if self._insar.modeCombination == 21:
scburstStartLine = (referenceSwath.burstStartTime - referenceSwath.sensingStart).total_seconds() * referenceSwath.prf + azoff
#secondary burst start times corresponding to reference burst start times (100% synchronization)
scburstStartLines = np.arange(scburstStartLine - 100000*referenceSwath.burstCycleLength, \
scburstStartLine + 100000*referenceSwath.burstCycleLength, \
referenceSwath.burstCycleLength)
dscburstStartLines = -((secondarySwath.burstStartTime - secondarySwath.sensingStart).total_seconds() * secondarySwath.prf - scburstStartLines)
#find the difference with minimum absolute value
unsynLines = dscburstStartLines[np.argmin(np.absolute(dscburstStartLines))]
if np.absolute(unsynLines) >= secondarySwath.burstLength:
synLines = 0
if unsynLines > 0:
unsynLines = secondarySwath.burstLength
else:
unsynLines = -secondarySwath.burstLength
else:
synLines = secondarySwath.burstLength - np.absolute(unsynLines)
unsynTime += unsynLines / referenceSwath.prf
synPercentage += synLines / referenceSwath.burstLength * 100.0
catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(synLines / referenceSwath.burstLength * 100.0), 'runBaseline')
############################################################################################
#illustration of the sign of the number of unsynchronized lines (unsynLines)
#The convention is the same as ampcor offset, that is,
# secondaryLineNumber = referenceLineNumber + unsynLines
#
# |-----------------------| ------------
# | | ^
# | | |
# | | | unsynLines < 0
# | | |
# | | \ /
# | | |-----------------------|
# | | | |
# | | | |
# |-----------------------| | |
# Reference Burst | |
# | |
# | |
# | |
# | |
# |-----------------------|
# Secondary Burst
#
#
############################################################################################
##burst parameters for ScanSAR wide mode not estimed yet
elif self._insar.modeCombination == 31:
#scansar is reference
scburstStartLine = (referenceSwath.burstStartTime - referenceSwath.sensingStart).total_seconds() * referenceSwath.prf + azoff
#secondary burst start times corresponding to reference burst start times (100% synchronization)
for k in range(-100000, 100000):
saz_burstx = scburstStartLine + referenceSwath.burstCycleLength * k
st_burstx = secondarySwath.sensingStart + datetime.timedelta(seconds=saz_burstx / referenceSwath.prf)
if saz_burstx >= 0.0 and saz_burstx <= secondarySwath.numberOfLines -1:
secondarySwath.burstStartTime = st_burstx
secondarySwath.burstLength = referenceSwath.burstLength
secondarySwath.burstCycleLength = referenceSwath.burstCycleLength
secondarySwath.swathNumber = referenceSwath.swathNumber
break
#unsynLines = 0
#synLines = referenceSwath.burstLength
#unsynTime += unsynLines / referenceSwath.prf
#synPercentage += synLines / referenceSwath.burstLength * 100.0
catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(100.0), 'runBaseline')
else:
pass
#overwrite original frame parameter file
if self._insar.modeCombination == 31:
frameDir = 'f{}_{}'.format(i+1, frameNumber)
self._insar.saveProduct(secondaryTrack.frames[i], os.path.join(frameDir, self._insar.secondaryFrameParameter))
#getting average
if self._insar.modeCombination == 21:
unsynTime /= numberOfFrames*numberOfSwaths
synPercentage /= numberOfFrames*numberOfSwaths
elif self._insar.modeCombination == 31:
unsynTime = 0.
synPercentage = 100.
else:
pass
#record results
if (self._insar.modeCombination == 21) or (self._insar.modeCombination == 31):
self._insar.burstUnsynchronizedTime = unsynTime
self._insar.burstSynchronization = synPercentage
catalog.addItem('burst synchronization averaged', '%.1f%%'%(synPercentage), 'runBaseline')
##################################################
#3. compute baseline
##################################################
#only compute baseline at four corners and center of the reference track
bboxRdr = getBboxRdr(referenceTrack)
rangeMin = bboxRdr[0]
rangeMax = bboxRdr[1]
azimuthTimeMin = bboxRdr[2]
azimuthTimeMax = bboxRdr[3]
azimuthTimeMid = azimuthTimeMin+datetime.timedelta(seconds=(azimuthTimeMax-azimuthTimeMin).total_seconds()/2.0)
rangeMid = (rangeMin + rangeMax) / 2.0
points = [[azimuthTimeMin, rangeMin],
[azimuthTimeMin, rangeMax],
[azimuthTimeMax, rangeMin],
[azimuthTimeMax, rangeMax],
[azimuthTimeMid, rangeMid]]
Bpar = []
Bperp = []
#modify Piyush's code for computing baslines
refElp = Planet(pname='Earth').ellipsoid
for x in points:
referenceSV = referenceTrack.orbit.interpolate(x[0], method='hermite')
target = referenceTrack.orbit.rdr2geo(x[0], x[1])
slvTime, slvrng = secondaryTrack.orbit.geo2rdr(target)
secondarySV = secondaryTrack.orbit.interpolateOrbit(slvTime, method='hermite')
targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist())
mxyz = np.array(referenceSV.getPosition())
mvel = np.array(referenceSV.getVelocity())
sxyz = np.array(secondarySV.getPosition())
#to fix abrupt change near zero in baseline grid. JUN-05-2020
mvelunit = mvel / np.linalg.norm(mvel)
sxyz = sxyz - np.dot ( sxyz-mxyz, mvelunit) * mvelunit
aa = np.linalg.norm(sxyz-mxyz)
costheta = (x[1]*x[1] + aa*aa - slvrng*slvrng)/(2.*x[1]*aa)
Bpar.append(aa*costheta)
perp = aa * np.sqrt(1 - costheta*costheta)
direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel))
Bperp.append(direction*perp)
catalog.addItem('parallel baseline at upperleft of reference track', Bpar[0], 'runBaseline')
catalog.addItem('parallel baseline at upperright of reference track', Bpar[1], 'runBaseline')
catalog.addItem('parallel baseline at lowerleft of reference track', Bpar[2], 'runBaseline')
catalog.addItem('parallel baseline at lowerright of reference track', Bpar[3], 'runBaseline')
catalog.addItem('parallel baseline at center of reference track', Bpar[4], 'runBaseline')
catalog.addItem('perpendicular baseline at upperleft of reference track', Bperp[0], 'runBaseline')
catalog.addItem('perpendicular baseline at upperright of reference track', Bperp[1], 'runBaseline')
catalog.addItem('perpendicular baseline at lowerleft of reference track', Bperp[2], 'runBaseline')
catalog.addItem('perpendicular baseline at lowerright of reference track', Bperp[3], 'runBaseline')
catalog.addItem('perpendicular baseline at center of reference track', Bperp[4], 'runBaseline')
##################################################
#4. compute bounding box
##################################################
referenceBbox = getBboxGeo(referenceTrack)
secondaryBbox = getBboxGeo(secondaryTrack)
catalog.addItem('reference bounding box', referenceBbox, 'runBaseline')
catalog.addItem('secondary bounding box', secondaryBbox, 'runBaseline')
catalog.printToLog(logger, "runBaseline")
self._insar.procDoc.addAllFromCatalog(catalog)