250 lines
9.4 KiB
C++
250 lines
9.4 KiB
C++
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Copyright 2009 California Institute of Technology. ALL RIGHTS RESERVED.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// United States Government Sponsorship acknowledged. This software is subject to
|
|
// U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
|
// (No [Export] License Required except when exporting to an embargoed country,
|
|
// end user, or in support of a prohibited end use). By downloading this software,
|
|
// the user agrees to comply with all applicable U.S. export laws and regulations.
|
|
// The user has the responsibility to obtain export licenses, or other export
|
|
// authority as may be required before exporting this software to any 'EAR99'
|
|
// embargoed foreign country or citizen of those countries.
|
|
//
|
|
// Author: Giangi Sacco
|
|
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
#include <Python.h>
|
|
#include <iostream>
|
|
#include "alosmodule.h"
|
|
|
|
using namespace std;
|
|
|
|
static const char * const __doc__ = "module for ALOS_pre_process";
|
|
|
|
PyModuleDef moduledef = {
|
|
// header
|
|
PyModuleDef_HEAD_INIT,
|
|
// name of the module
|
|
"alos",
|
|
// module documentation string
|
|
__doc__,
|
|
// size of the per-interpreter state of the module;
|
|
// -1 if this state is global
|
|
-1,
|
|
alos_methods,
|
|
};
|
|
|
|
// initialization function for the module
|
|
// *must* be called PyInit_alos
|
|
PyMODINIT_FUNC
|
|
PyInit_alos()
|
|
{
|
|
// create the module using moduledef struct defined above
|
|
PyObject * module = PyModule_Create(&moduledef);
|
|
// check whether module creation succeeded and raise an exception if not
|
|
if (!module) {
|
|
return module;
|
|
}
|
|
// otherwise, we have an initialized module
|
|
// and return the newly created module
|
|
return module;
|
|
}
|
|
|
|
PyObject *alos_C(PyObject* self,PyObject *args)
|
|
{
|
|
char *imageFile,*leaderFile,*outFile;
|
|
struct PRM inputPRM;
|
|
struct PRM outputPRM;
|
|
struct GLOBALS globals;
|
|
|
|
if(!PyArg_ParseTuple(args,"sss",&leaderFile,&imageFile,&outFile))
|
|
{
|
|
return NULL;
|
|
}
|
|
strcpy(inputPRM.led_file,leaderFile);
|
|
// They call it the input_file, since it is used as input to the remaining
|
|
// functions
|
|
strcpy(inputPRM.input_file,outFile);
|
|
inputPRM.near_range = -1; // Near Range
|
|
inputPRM.RE = -1; // Local Earth Radius
|
|
inputPRM.fd1 = 0.0; // Doppler centroid
|
|
inputPRM.chirp_ext = 1000; // Chirp Extension
|
|
inputPRM.nrows = 16384; // Number of rows to use
|
|
inputPRM.num_patches = 1000; // Number of patches to use
|
|
// There are other options that are globals and are not listed in the PRM
|
|
// structure
|
|
globals.imagefilename = imageFile;
|
|
globals.quad_pol = 0; // Is this quad polarization data?
|
|
globals.ALOS_format = 0; // Is this an ERSDAC product?
|
|
globals.force_slope = 0; // Should we force a chirp slope?
|
|
globals.forced_slope = 1.0; // If so, what is its value?
|
|
globals.dopp = 0; // Are we calculating a doppler?
|
|
globals.tbias = 0.0; // Is there a time bias to fix poor orbits?
|
|
|
|
ALOS_pre_process(inputPRM,&outputPRM,globals);
|
|
|
|
PyObject * dict = PyDict_New();
|
|
createDictionaryOutput(&outputPRM,dict);
|
|
return Py_BuildValue("N", dict);
|
|
}
|
|
|
|
PyObject *alose_C(PyObject* self,PyObject *args)
|
|
{
|
|
char *imageFile,*leaderFile,*outFile;
|
|
struct PRM inputPRM;
|
|
struct PRM outputPRM;
|
|
struct GLOBALS globals;
|
|
|
|
if(!PyArg_ParseTuple(args,"sss",&leaderFile,&imageFile,&outFile))
|
|
{
|
|
return NULL;
|
|
}
|
|
strcpy(inputPRM.led_file,leaderFile);
|
|
// They call it the input_file, since it is used as input to the remaining
|
|
// functions
|
|
strcpy(inputPRM.input_file,outFile);
|
|
inputPRM.near_range = -1; // Near Range
|
|
inputPRM.RE = -1; // Local Earth Radius
|
|
inputPRM.fd1 = 0.0; // Doppler centroid
|
|
inputPRM.chirp_ext = 1000; // Chirp Extension
|
|
inputPRM.nrows = 16384; // Number of rows to use
|
|
inputPRM.num_patches = 1000; // Number of patches to use
|
|
// There are other options that are globals and are not listed in the PRM
|
|
// structure
|
|
globals.imagefilename = imageFile;
|
|
globals.quad_pol = 0; // Is this quad polarization data?
|
|
globals.ALOS_format = 1; // Is this an ERSDAC product?
|
|
globals.force_slope = 0; // Should we force a chirp slope?
|
|
globals.forced_slope = 1.0; // If so, what is its value?
|
|
globals.dopp = 0; // Are we calculating a doppler?
|
|
globals.tbias = 0.0; // Is there a time bias to fix poor orbits?
|
|
|
|
ALOS_pre_process(inputPRM,&outputPRM,globals);
|
|
|
|
PyObject * dict = PyDict_New();
|
|
createDictionaryOutput(&outputPRM,dict);
|
|
return Py_BuildValue("N", dict);
|
|
}
|
|
|
|
|
|
PyObject * createDictionaryOutput(struct PRM * prm, PyObject * dict)
|
|
{
|
|
double vel;
|
|
double fd,fdd,fddd;
|
|
double dr,daz;
|
|
int lookssquare;
|
|
double cosinc, sininc, range;
|
|
double sol = 299792458.;
|
|
/* velocity in orbit */
|
|
vel=prm->vel/sqrt(prm->RE/(prm->RE+prm->ht));
|
|
/* Doppler in prfs */
|
|
fd=prm->fd1/prm->prf;
|
|
fdd=prm->fdd1/prm->prf;
|
|
fddd=prm->fddd1/prm->prf;
|
|
/* looks for ~square pixels */
|
|
range=prm->near_range+sol/2./prm->fs*prm->num_rng_bins/2.;
|
|
cosinc=(prm->RE*prm->RE +
|
|
range*range-((prm->RE+prm->ht)*(prm->RE+prm->ht)))/2./prm->RE/range;
|
|
sininc=sqrt(1-cosinc*cosinc);
|
|
dr=sol/2./prm->fs/sininc;
|
|
daz=vel/prm->prf*(prm->RE/(prm->RE+prm->ht));
|
|
lookssquare=dr/daz+0.5;
|
|
if(lookssquare == 2)lookssquare=4;
|
|
if(lookssquare == 3)lookssquare=4;
|
|
|
|
Py_ssize_t len = 3;
|
|
PyObject * dopCoef = PyList_New(len);
|
|
PyObject * floatVal = PyFloat_FromDouble((double)fd);
|
|
PyList_SetItem(dopCoef,0,floatVal);//steals the reference
|
|
floatVal = PyFloat_FromDouble((double)fdd);
|
|
PyList_SetItem(dopCoef,1,floatVal);
|
|
floatVal = PyFloat_FromDouble((double)fdd);
|
|
PyList_SetItem(dopCoef,2,floatVal);
|
|
//does not steal -> iuse Py_xdecref
|
|
PyDict_SetItemString(dict, "DOPPLER_CENTROID_COEFFICIENTS", dopCoef);
|
|
Py_XDECREF(dopCoef);
|
|
PyObject * intVal = PyLong_FromLong((long) prm->bytes_per_line);
|
|
PyDict_SetItemString(dict,"NUMBER_BYTES_PER_LINE",intVal);
|
|
Py_XDECREF(intVal);
|
|
intVal = PyLong_FromLong((long) prm->good_bytes);
|
|
PyDict_SetItemString(dict,"NUMBER_GOOD_BYTES",intVal);
|
|
Py_XDECREF(intVal);
|
|
intVal = PyLong_FromLong((long) prm->num_rng_bins);
|
|
PyDict_SetItemString(dict,"NUMBER_RANGE_BIN",intVal);
|
|
Py_XDECREF(intVal);
|
|
intVal = PyLong_FromLong((long) lookssquare);
|
|
PyDict_SetItemString(dict,"NUMBER_AZIMUTH_LOOKS",intVal);
|
|
Py_XDECREF(intVal);
|
|
intVal = PyLong_FromLong((long)prm->chirp_ext);
|
|
PyDict_SetItemString(dict,"RANGE_CHIRP_EXTENSION_POINTS",intVal);
|
|
Py_XDECREF(intVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->RE);
|
|
PyDict_SetItemString(dict,"PLANET_LOCAL_RADIUS",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)vel);
|
|
PyDict_SetItemString(dict,"BODY_FIXED_VELOCITY",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->ht);
|
|
PyDict_SetItemString(dict,"SPACECRAFT_HEIGHT",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->near_range);
|
|
PyDict_SetItemString(dict,"RANGE_FIRST_SAMPLE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->prf);
|
|
PyDict_SetItemString(dict,"PRF",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->xmi);
|
|
PyDict_SetItemString(dict,"INPHASE_VALUE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->xmq);
|
|
PyDict_SetItemString(dict,"QUADRATURE_VALUE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->az_res);
|
|
PyDict_SetItemString(dict,"AZIMUTH_RESOLUTION",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->fs);
|
|
PyDict_SetItemString(dict,"RANGE_SAMPLING_RATE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->chirp_slope);
|
|
PyDict_SetItemString(dict,"CHIRP_SLOPE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->pulsedur);
|
|
PyDict_SetItemString(dict,"RANGE_PULSE_DURATION",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->lambda);
|
|
PyDict_SetItemString(dict,"RADAR_WAVELENGTH",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
PyObject * strVal = PyUnicode_FromString(prm->iqflip);
|
|
PyDict_SetItemString(dict,"IQ_FLIP",strVal);
|
|
Py_XDECREF(strVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->SC_clock_start);
|
|
PyDict_SetItemString(dict,"SC_CLOCK_START",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->SC_clock_stop);
|
|
PyDict_SetItemString(dict,"SC_CLOCK_STOP",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
floatVal = PyFloat_FromDouble((double)prm->near_range);
|
|
PyDict_SetItemString(dict,"NEAR_RANGE",floatVal);
|
|
Py_XDECREF(floatVal);
|
|
intVal = PyLong_FromLong((long)prm->first_sample);
|
|
PyDict_SetItemString(dict,"FIRST_SAMPLE",intVal);
|
|
Py_XDECREF(intVal);
|
|
|
|
return Py_BuildValue("i", 1);
|
|
}
|