305 lines
12 KiB
Python
305 lines
12 KiB
Python
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# United States Government Sponsorship acknowledged. This software is subject to
|
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
|
# (No [Export] License Required except when exporting to an embargoed country,
|
|
# end user, or in support of a prohibited end use). By downloading this software,
|
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
|
# The user has the responsibility to obtain export licenses, or other export
|
|
# authority as may be required before exporting this software to any 'EAR99'
|
|
# embargoed foreign country or citizen of those countries.
|
|
#
|
|
# Author: Walter Szeliga
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
import datetime
|
|
|
|
try:
|
|
import h5py
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Python module h5py is required to process COSMO-SkyMed data"
|
|
)
|
|
|
|
import isceobj
|
|
from isceobj.Orbit.Orbit import StateVector
|
|
from isceobj.Planet.AstronomicalHandbook import Const
|
|
from isceobj.Planet.Planet import Planet
|
|
from isceobj.Scene.Frame import Frame
|
|
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTUtil
|
|
from isceobj.Sensor import tkfunc,createAuxFile
|
|
from iscesys.Component.Component import Component
|
|
from .Sensor import Sensor
|
|
import numpy as np
|
|
|
|
HDF5 = Component.Parameter(
|
|
'hdf5FileList',
|
|
public_name='HDF5',
|
|
default=None,
|
|
container=list,
|
|
type=str,
|
|
mandatory=True,
|
|
intent='input',
|
|
doc='Single or list of hdf5 csk input file(s)'
|
|
)
|
|
|
|
class COSMO_SkyMed(Sensor):
|
|
"""
|
|
A class to parse COSMO-SkyMed metadata
|
|
"""
|
|
|
|
parameter_list = (HDF5,) + Sensor.parameter_list
|
|
logging_name = "isce.sensor.COSMO_SkyMed"
|
|
family = 'cosmo_skymed'
|
|
|
|
def __init__(self,family='',name=''):
|
|
super().__init__(family if family else self.__class__.family, name=name)
|
|
self.hdf5 = None
|
|
#used to allow refactoring on tkfunc
|
|
self._imageFileList = None
|
|
|
|
###Specific doppler functions for CSK
|
|
self.dopplerRangeTime = []
|
|
self.dopplerAzimuthTime = []
|
|
self.azimuthRefTime = None
|
|
self.rangeRefTime = None
|
|
self.rangeFirstTime = None
|
|
self.rangeLastTime = None
|
|
|
|
|
|
## make this a class attribute, and a Sensor.Constant--not a dictionary.
|
|
self.constants = {'iBias': 127.5,
|
|
'qBias': 127.5}
|
|
return None
|
|
|
|
## Note: this breaks the ISCE convention of getters.
|
|
def getFrame(self):
|
|
return self.frame
|
|
|
|
|
|
#jng parse or parse_context never used
|
|
def parse(self):
|
|
try:
|
|
fp = h5py.File(self.hdf5, 'r')
|
|
except Exception as strerror:
|
|
self.logger.error("IOError: %s\n" % strerror)
|
|
return None
|
|
|
|
self.populateMetadata(file=fp)
|
|
fp.close()
|
|
|
|
## Use h5's context management-- TODO: debug and install as 'parse'
|
|
def parse_context(self):
|
|
try:
|
|
with h5py.File(self.hdf5, 'r') as fp:
|
|
self.populateMetadata(file=fp)
|
|
except Exception as strerror:
|
|
self.logger.error("IOError: %s\n" % strerror)
|
|
|
|
return None
|
|
|
|
|
|
def _populatePlatform(self, file=None):
|
|
platform = self.frame.getInstrument().getPlatform()
|
|
|
|
if np.isnan(file['S01'].attrs['Equivalent First Column Time']) and (len(file['S01/B001'].attrs['Range First Times']) > 1):
|
|
raise NotImplementedError('Current CSK reader does not handle RAW data not adjusted for SWST shifts')
|
|
|
|
platform.setMission(file.attrs['Satellite ID']) # Could use Mission ID as well
|
|
platform.setPlanet(Planet(pname="Earth"))
|
|
platform.setPointingDirection(self.lookMap[file.attrs['Look Side'].decode('utf-8')])
|
|
platform.setAntennaLength(file.attrs['Antenna Length'])
|
|
|
|
def _populateInstrument(self,file):
|
|
instrument = self.frame.getInstrument()
|
|
|
|
rangePixelSize = Const.c/(2*file['S01'].attrs['Sampling Rate'])
|
|
|
|
instrument.setRadarWavelength(file.attrs['Radar Wavelength'])
|
|
instrument.setPulseRepetitionFrequency(file['S01'].attrs['PRF'])
|
|
instrument.setRangePixelSize(rangePixelSize)
|
|
instrument.setPulseLength(file['S01'].attrs['Range Chirp Length'])
|
|
instrument.setChirpSlope(file['S01'].attrs['Range Chirp Rate'])
|
|
instrument.setRangeSamplingRate(file['S01'].attrs['Sampling Rate'])
|
|
instrument.setInPhaseValue(self.constants['iBias'])
|
|
instrument.setQuadratureValue(self.constants['qBias'])
|
|
instrument.setBeamNumber(file.attrs['Multi-Beam ID'])
|
|
|
|
def _populateFrame(self,file):
|
|
rft = file['S01']['B001'].attrs['Range First Times'][0]
|
|
slantRange = rft*Const.c/2.0
|
|
sensingStart = self._parseNanoSecondTimeStamp(file.attrs['Scene Sensing Start UTC'])
|
|
sensingStop = self._parseNanoSecondTimeStamp(file.attrs['Scene Sensing Stop UTC'])
|
|
centerTime = DTUtil.timeDeltaToSeconds(sensingStop - sensingStart)/2.0
|
|
sensingMid = sensingStart + datetime.timedelta(microseconds=int(centerTime*1e6))
|
|
|
|
self.frame.setStartingRange(slantRange)
|
|
self.frame.setPassDirection(file.attrs['Orbit Direction'])
|
|
self.frame.setOrbitNumber(file.attrs['Orbit Number'])
|
|
self.frame.setProcessingFacility(file.attrs['Processing Centre'])
|
|
self.frame.setProcessingSoftwareVersion(file.attrs['L0 Software Version'])
|
|
self.frame.setPolarization(file['S01'].attrs['Polarisation'])
|
|
self.frame.setNumberOfLines(file['S01']['B001'].shape[0])
|
|
self.frame.setNumberOfSamples(file['S01']['B001'].shape[1])
|
|
self.frame.setSensingStart(sensingStart)
|
|
self.frame.setSensingMid(sensingMid)
|
|
self.frame.setSensingStop(sensingStop)
|
|
|
|
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
|
|
farRange = slantRange + self.frame.getNumberOfSamples()*rangePixelSize
|
|
self.frame.setFarRange(farRange)
|
|
|
|
|
|
def _populateOrbit(self,file):
|
|
orbit = self.frame.getOrbit()
|
|
|
|
orbit.setReferenceFrame('ECR')
|
|
orbit.setOrbitSource('Header')
|
|
t0 = datetime.datetime.strptime(file.attrs['Reference UTC'].decode('utf-8'),'%Y-%m-%d %H:%M:%S.%f000')
|
|
t = file.attrs['State Vectors Times']
|
|
position = file.attrs['ECEF Satellite Position']
|
|
velocity = file.attrs['ECEF Satellite Velocity']
|
|
|
|
for i in range(len(position)):
|
|
vec = StateVector()
|
|
dt = t0 + datetime.timedelta(seconds=t[i])
|
|
vec.setTime(dt)
|
|
vec.setPosition([position[i,0],position[i,1],position[i,2]])
|
|
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
|
|
orbit.addStateVector(vec)
|
|
|
|
def populateImage(self,filename):
|
|
rawImage = isceobj.createRawImage()
|
|
rawImage.setByteOrder('l')
|
|
rawImage.setFilename(filename)
|
|
rawImage.setAccessMode('read')
|
|
rawImage.setWidth(2*self.frame.getNumberOfSamples())
|
|
rawImage.setXmax(2*self.frame.getNumberOfSamples())
|
|
rawImage.setXmin(0)
|
|
self.getFrame().setImage(rawImage)
|
|
|
|
def _populateExtras(self, file):
|
|
"""
|
|
Populate some extra fields.
|
|
"""
|
|
|
|
self.dopplerRangeTime = file.attrs['Centroid vs Range Time Polynomial']
|
|
self.dopplerAzimuthTime = file.attrs['Centroid vs Azimuth Time Polynomial']
|
|
self.rangeRefTime = file.attrs['Range Polynomial Reference Time']
|
|
self.azimuthRefTime = file.attrs['Azimuth Polynomial Reference Time']
|
|
self.rangeFirstTime = file['S01']['B001'].attrs['Range First Times'][0]
|
|
self.rangeLastTime = self.rangeFirstTime + (self.frame.getNumberOfSamples()-1) / self.frame.instrument.getRangeSamplingRate()
|
|
|
|
|
|
def extractImage(self):
|
|
"""Extract the raw image data"""
|
|
import os
|
|
from ctypes import cdll, c_char_p
|
|
extract_csk = cdll.LoadLibrary(os.path.dirname(__file__)+'/csk.so')
|
|
# Prepare and run the C-based extractor
|
|
|
|
for i in range(len(self.hdf5FileList)):
|
|
#need to create a new instance every time
|
|
self.frame = Frame()
|
|
self.frame.configure()
|
|
appendStr = '_' + str(i)
|
|
# if more than one file to contatenate that create different outputs
|
|
# but suffixing _i
|
|
if(len(self.hdf5FileList) == 1):
|
|
appendStr = ''
|
|
outputNow = self.output + appendStr
|
|
self.hdf5 = self.hdf5FileList[i]
|
|
inFile_c = c_char_p(bytes(self.hdf5,'utf-8'))
|
|
outFile_c = c_char_p(bytes(outputNow,'utf-8'))
|
|
|
|
extract_csk.extract_csk(inFile_c,outFile_c)
|
|
# Now, populate the metadata
|
|
try:
|
|
fp = h5py.File(self.hdf5,'r')
|
|
except Exception as strerror:
|
|
self.logger.error("IOError: %s\n" % strerror)
|
|
return
|
|
self.populateMetadata(file=fp)
|
|
self.populateImage(outputNow)
|
|
self._populateExtras(fp)
|
|
|
|
fp.close()
|
|
self.frameList.append(self.frame)
|
|
createAuxFile(self.frame,outputNow + '.aux')
|
|
self._imageFileList = self.hdf5FileList
|
|
return tkfunc(self)
|
|
|
|
|
|
def _parseNanoSecondTimeStamp(self,timestamp):
|
|
"""Parse a date-time string with nanosecond precision and return a
|
|
datetime object
|
|
"""
|
|
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
|
|
microsec = float(nanoSeconds)*1e-3
|
|
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
|
|
dt = dt + datetime.timedelta(microseconds=microsec)
|
|
return dt
|
|
|
|
def extractDoppler(self):
|
|
"""
|
|
Return the doppler centroid as defined in the HDF5 file.
|
|
"""
|
|
quadratic = {}
|
|
midtime = (self.rangeLastTime + self.rangeFirstTime)*0.5 - self.rangeRefTime
|
|
|
|
fd_mid = 0.0
|
|
x = 1.0
|
|
for ind,coeff in enumerate(self.dopplerRangeTime):
|
|
fd_mid += coeff*x
|
|
x *= midtime
|
|
|
|
####insarApp style
|
|
quadratic['a'] = fd_mid/self.frame.getInstrument().getPulseRepetitionFrequency()
|
|
quadratic['b'] = 0.
|
|
quadratic['c'] = 0.
|
|
|
|
|
|
###For roiApp more accurate
|
|
####Convert stuff to pixel wise coefficients
|
|
from isceobj.Util import Poly1D
|
|
|
|
coeffs = self.dopplerRangeTime
|
|
dr = self.frame.getInstrument().getRangePixelSize()
|
|
rref = 0.5 * Const.c * self.rangeRefTime
|
|
r0 = self.frame.getStartingRange()
|
|
norm = 0.5*Const.c/dr
|
|
|
|
dcoeffs = []
|
|
for ind, val in enumerate(coeffs):
|
|
dcoeffs.append( val / (norm**ind))
|
|
|
|
|
|
poly = Poly1D.Poly1D()
|
|
poly.initPoly(order=len(coeffs)-1)
|
|
poly.setMean( (rref - r0)/dr - 1.0)
|
|
poly.setCoeffs(dcoeffs)
|
|
|
|
|
|
pix = np.linspace(0,self.frame.getNumberOfSamples(),num=len(coeffs)+1)
|
|
evals = poly(pix)
|
|
fit = np.polyfit(pix,evals, len(coeffs)-1)
|
|
self.frame._dopplerVsPixel = list(fit[::-1])
|
|
print('Doppler Fit: ', fit[::-1])
|
|
|
|
return quadratic
|