ISCE_INSAR/components/isceobj/Sensor/COSMO_SkyMed.py

305 lines
12 KiB
Python

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# United States Government Sponsorship acknowledged. This software is subject to
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
# (No [Export] License Required except when exporting to an embargoed country,
# end user, or in support of a prohibited end use). By downloading this software,
# the user agrees to comply with all applicable U.S. export laws and regulations.
# The user has the responsibility to obtain export licenses, or other export
# authority as may be required before exporting this software to any 'EAR99'
# embargoed foreign country or citizen of those countries.
#
# Author: Walter Szeliga
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import datetime
try:
import h5py
except ImportError:
raise ImportError(
"Python module h5py is required to process COSMO-SkyMed data"
)
import isceobj
from isceobj.Orbit.Orbit import StateVector
from isceobj.Planet.AstronomicalHandbook import Const
from isceobj.Planet.Planet import Planet
from isceobj.Scene.Frame import Frame
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTUtil
from isceobj.Sensor import tkfunc,createAuxFile
from iscesys.Component.Component import Component
from .Sensor import Sensor
import numpy as np
HDF5 = Component.Parameter(
'hdf5FileList',
public_name='HDF5',
default=None,
container=list,
type=str,
mandatory=True,
intent='input',
doc='Single or list of hdf5 csk input file(s)'
)
class COSMO_SkyMed(Sensor):
"""
A class to parse COSMO-SkyMed metadata
"""
parameter_list = (HDF5,) + Sensor.parameter_list
logging_name = "isce.sensor.COSMO_SkyMed"
family = 'cosmo_skymed'
def __init__(self,family='',name=''):
super().__init__(family if family else self.__class__.family, name=name)
self.hdf5 = None
#used to allow refactoring on tkfunc
self._imageFileList = None
###Specific doppler functions for CSK
self.dopplerRangeTime = []
self.dopplerAzimuthTime = []
self.azimuthRefTime = None
self.rangeRefTime = None
self.rangeFirstTime = None
self.rangeLastTime = None
## make this a class attribute, and a Sensor.Constant--not a dictionary.
self.constants = {'iBias': 127.5,
'qBias': 127.5}
return None
## Note: this breaks the ISCE convention of getters.
def getFrame(self):
return self.frame
#jng parse or parse_context never used
def parse(self):
try:
fp = h5py.File(self.hdf5, 'r')
except Exception as strerror:
self.logger.error("IOError: %s\n" % strerror)
return None
self.populateMetadata(file=fp)
fp.close()
## Use h5's context management-- TODO: debug and install as 'parse'
def parse_context(self):
try:
with h5py.File(self.hdf5, 'r') as fp:
self.populateMetadata(file=fp)
except Exception as strerror:
self.logger.error("IOError: %s\n" % strerror)
return None
def _populatePlatform(self, file=None):
platform = self.frame.getInstrument().getPlatform()
if np.isnan(file['S01'].attrs['Equivalent First Column Time']) and (len(file['S01/B001'].attrs['Range First Times']) > 1):
raise NotImplementedError('Current CSK reader does not handle RAW data not adjusted for SWST shifts')
platform.setMission(file.attrs['Satellite ID']) # Could use Mission ID as well
platform.setPlanet(Planet(pname="Earth"))
platform.setPointingDirection(self.lookMap[file.attrs['Look Side'].decode('utf-8')])
platform.setAntennaLength(file.attrs['Antenna Length'])
def _populateInstrument(self,file):
instrument = self.frame.getInstrument()
rangePixelSize = Const.c/(2*file['S01'].attrs['Sampling Rate'])
instrument.setRadarWavelength(file.attrs['Radar Wavelength'])
instrument.setPulseRepetitionFrequency(file['S01'].attrs['PRF'])
instrument.setRangePixelSize(rangePixelSize)
instrument.setPulseLength(file['S01'].attrs['Range Chirp Length'])
instrument.setChirpSlope(file['S01'].attrs['Range Chirp Rate'])
instrument.setRangeSamplingRate(file['S01'].attrs['Sampling Rate'])
instrument.setInPhaseValue(self.constants['iBias'])
instrument.setQuadratureValue(self.constants['qBias'])
instrument.setBeamNumber(file.attrs['Multi-Beam ID'])
def _populateFrame(self,file):
rft = file['S01']['B001'].attrs['Range First Times'][0]
slantRange = rft*Const.c/2.0
sensingStart = self._parseNanoSecondTimeStamp(file.attrs['Scene Sensing Start UTC'])
sensingStop = self._parseNanoSecondTimeStamp(file.attrs['Scene Sensing Stop UTC'])
centerTime = DTUtil.timeDeltaToSeconds(sensingStop - sensingStart)/2.0
sensingMid = sensingStart + datetime.timedelta(microseconds=int(centerTime*1e6))
self.frame.setStartingRange(slantRange)
self.frame.setPassDirection(file.attrs['Orbit Direction'])
self.frame.setOrbitNumber(file.attrs['Orbit Number'])
self.frame.setProcessingFacility(file.attrs['Processing Centre'])
self.frame.setProcessingSoftwareVersion(file.attrs['L0 Software Version'])
self.frame.setPolarization(file['S01'].attrs['Polarisation'])
self.frame.setNumberOfLines(file['S01']['B001'].shape[0])
self.frame.setNumberOfSamples(file['S01']['B001'].shape[1])
self.frame.setSensingStart(sensingStart)
self.frame.setSensingMid(sensingMid)
self.frame.setSensingStop(sensingStop)
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
farRange = slantRange + self.frame.getNumberOfSamples()*rangePixelSize
self.frame.setFarRange(farRange)
def _populateOrbit(self,file):
orbit = self.frame.getOrbit()
orbit.setReferenceFrame('ECR')
orbit.setOrbitSource('Header')
t0 = datetime.datetime.strptime(file.attrs['Reference UTC'].decode('utf-8'),'%Y-%m-%d %H:%M:%S.%f000')
t = file.attrs['State Vectors Times']
position = file.attrs['ECEF Satellite Position']
velocity = file.attrs['ECEF Satellite Velocity']
for i in range(len(position)):
vec = StateVector()
dt = t0 + datetime.timedelta(seconds=t[i])
vec.setTime(dt)
vec.setPosition([position[i,0],position[i,1],position[i,2]])
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
orbit.addStateVector(vec)
def populateImage(self,filename):
rawImage = isceobj.createRawImage()
rawImage.setByteOrder('l')
rawImage.setFilename(filename)
rawImage.setAccessMode('read')
rawImage.setWidth(2*self.frame.getNumberOfSamples())
rawImage.setXmax(2*self.frame.getNumberOfSamples())
rawImage.setXmin(0)
self.getFrame().setImage(rawImage)
def _populateExtras(self, file):
"""
Populate some extra fields.
"""
self.dopplerRangeTime = file.attrs['Centroid vs Range Time Polynomial']
self.dopplerAzimuthTime = file.attrs['Centroid vs Azimuth Time Polynomial']
self.rangeRefTime = file.attrs['Range Polynomial Reference Time']
self.azimuthRefTime = file.attrs['Azimuth Polynomial Reference Time']
self.rangeFirstTime = file['S01']['B001'].attrs['Range First Times'][0]
self.rangeLastTime = self.rangeFirstTime + (self.frame.getNumberOfSamples()-1) / self.frame.instrument.getRangeSamplingRate()
def extractImage(self):
"""Extract the raw image data"""
import os
from ctypes import cdll, c_char_p
extract_csk = cdll.LoadLibrary(os.path.dirname(__file__)+'/csk.so')
# Prepare and run the C-based extractor
for i in range(len(self.hdf5FileList)):
#need to create a new instance every time
self.frame = Frame()
self.frame.configure()
appendStr = '_' + str(i)
# if more than one file to contatenate that create different outputs
# but suffixing _i
if(len(self.hdf5FileList) == 1):
appendStr = ''
outputNow = self.output + appendStr
self.hdf5 = self.hdf5FileList[i]
inFile_c = c_char_p(bytes(self.hdf5,'utf-8'))
outFile_c = c_char_p(bytes(outputNow,'utf-8'))
extract_csk.extract_csk(inFile_c,outFile_c)
# Now, populate the metadata
try:
fp = h5py.File(self.hdf5,'r')
except Exception as strerror:
self.logger.error("IOError: %s\n" % strerror)
return
self.populateMetadata(file=fp)
self.populateImage(outputNow)
self._populateExtras(fp)
fp.close()
self.frameList.append(self.frame)
createAuxFile(self.frame,outputNow + '.aux')
self._imageFileList = self.hdf5FileList
return tkfunc(self)
def _parseNanoSecondTimeStamp(self,timestamp):
"""Parse a date-time string with nanosecond precision and return a
datetime object
"""
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
microsec = float(nanoSeconds)*1e-3
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
dt = dt + datetime.timedelta(microseconds=microsec)
return dt
def extractDoppler(self):
"""
Return the doppler centroid as defined in the HDF5 file.
"""
quadratic = {}
midtime = (self.rangeLastTime + self.rangeFirstTime)*0.5 - self.rangeRefTime
fd_mid = 0.0
x = 1.0
for ind,coeff in enumerate(self.dopplerRangeTime):
fd_mid += coeff*x
x *= midtime
####insarApp style
quadratic['a'] = fd_mid/self.frame.getInstrument().getPulseRepetitionFrequency()
quadratic['b'] = 0.
quadratic['c'] = 0.
###For roiApp more accurate
####Convert stuff to pixel wise coefficients
from isceobj.Util import Poly1D
coeffs = self.dopplerRangeTime
dr = self.frame.getInstrument().getRangePixelSize()
rref = 0.5 * Const.c * self.rangeRefTime
r0 = self.frame.getStartingRange()
norm = 0.5*Const.c/dr
dcoeffs = []
for ind, val in enumerate(coeffs):
dcoeffs.append( val / (norm**ind))
poly = Poly1D.Poly1D()
poly.initPoly(order=len(coeffs)-1)
poly.setMean( (rref - r0)/dr - 1.0)
poly.setCoeffs(dcoeffs)
pix = np.linspace(0,self.frame.getNumberOfSamples(),num=len(coeffs)+1)
evals = poly(pix)
fit = np.polyfit(pix,evals, len(coeffs)-1)
self.frame._dopplerVsPixel = list(fit[::-1])
print('Doppler Fit: ', fit[::-1])
return quadratic