ISCE_INSAR/components/isceobj/Alos2burstProc/runCoregSd.py

236 lines
10 KiB
Python

#
# Author: Cunren Liang
# Copyright 2015-present, NASA-JPL/Caltech
#
import os
import logging
import numpy as np
import isceobj
from isceobj.Alos2Proc.Alos2ProcPublic import resampleBursts
from isceobj.Alos2Proc.Alos2ProcPublic import mosaicBurstAmplitude
from isceobj.Alos2Proc.Alos2ProcPublic import mosaicBurstInterferogram
logger = logging.getLogger('isce.alos2burstinsar.runCoregSd')
def runCoregSd(self):
'''coregister bursts by spectral diversity
'''
catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
self.updateParamemetersFromUser()
referenceTrack = self._insar.loadTrack(reference=True)
secondaryTrack = self._insar.loadTrack(reference=False)
#demFile = os.path.abspath(self._insar.dem)
#wbdFile = os.path.abspath(self._insar.wbd)
###############################################################################
#self._insar.rangeResidualOffsetSd = [[] for i in range(len(referenceTrack.frames))]
self._insar.azimuthResidualOffsetSd = [[] for i in range(len(referenceTrack.frames))]
for i, frameNumber in enumerate(self._insar.referenceFrames):
frameDir = 'f{}_{}'.format(i+1, frameNumber)
os.chdir(frameDir)
for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)):
swathDir = 's{}'.format(swathNumber)
os.chdir(swathDir)
print('processing frame {}, swath {}'.format(frameNumber, swathNumber))
referenceSwath = referenceTrack.frames[i].swaths[j]
secondarySwath = secondaryTrack.frames[i].swaths[j]
##################################################
# spectral diversity or mai
##################################################
sdDir = 'spectral_diversity'
os.makedirs(sdDir, exist_ok=True)
os.chdir(sdDir)
interferogramDir = 'burst_interf_2_coreg_cc'
interferogramPrefix = self._insar.referenceBurstPrefix + '-' + self._insar.secondaryBurstPrefix
offsetSd = spectralDiversity(referenceSwath, os.path.join('../', interferogramDir), interferogramPrefix, self._insar.interferogramSd,
numberLooksScanSAR=4, numberRangeLooks=28, numberAzimuthLooks=8, coherenceThreshold=0.85,
keep=True, filt=True, filtWinSizeRange=5, filtWinSizeAzimuth=5)
#here use the number of looks for sd as filtWinSizeRange and filtWinSizeAzimuth to get the best filtering result?
os.chdir('../')
self._insar.azimuthResidualOffsetSd[i].append(offsetSd)
catalog.addItem('azimuth residual offset at frame {}, swath {}'.format(frameNumber, swathNumber), '{}'.format(offsetSd), 'runCoregSd')
#this small residual azimuth offset has small impact, it's not worth the time to resample secondary bursts again.
formInterferogram=False
if formInterferogram:
##################################################
# resample bursts
##################################################
secondaryBurstResampledDir = self._insar.secondaryBurstPrefix + '_3_coreg_sd'
#interferogramDir = self._insar.referenceBurstPrefix + '-' + self._insar.secondaryBurstPrefix + '_coreg_geom'
interferogramDir = 'burst_interf_3_coreg_sd'
interferogramPrefix = self._insar.referenceBurstPrefix + '-' + self._insar.secondaryBurstPrefix
resampleBursts(referenceSwath, secondarySwath,
self._insar.referenceBurstPrefix, self._insar.secondaryBurstPrefix, secondaryBurstResampledDir, interferogramDir,
self._insar.referenceBurstPrefix, self._insar.secondaryBurstPrefix, self._insar.secondaryBurstPrefix, interferogramPrefix,
self._insar.rangeOffset, self._insar.azimuthOffset, rangeOffsetResidual=self._insar.rangeResidualOffsetCc[i][j], azimuthOffsetResidual=self._insar.azimuthResidualOffsetCc[i][j]+offsetSd)
##################################################
# mosaic burst amplitudes and interferograms
##################################################
os.chdir(secondaryBurstResampledDir)
mosaicBurstAmplitude(referenceSwath, self._insar.secondaryBurstPrefix, self._insar.secondaryMagnitude, numberOfLooksThreshold=4)
os.chdir('../')
os.chdir(interferogramDir)
mosaicBurstInterferogram(referenceSwath, interferogramPrefix, self._insar.interferogram, numberOfLooksThreshold=4)
os.chdir('../')
os.chdir('../')
os.chdir('../')
###############################################################################
catalog.printToLog(logger, "runCoregSd")
self._insar.procDoc.addAllFromCatalog(catalog)
def spectralDiversity(referenceSwath, interferogramDir, interferogramPrefix, outputList, numberLooksScanSAR=None, numberRangeLooks=20, numberAzimuthLooks=10, coherenceThreshold=0.85, keep=False, filt=False, filtWinSizeRange=5, filtWinSizeAzimuth=5):
'''
numberLooksScanSAR: number of looks of the ScanSAR system
numberRangeLooks: number of range looks to take
numberAzimuthLooks: number of azimuth looks to take
keep: whether keep intermediate files
'''
import os
import numpy as np
from isceobj.Alos2Proc.Alos2ProcPublic import create_multi_index
from isceobj.Alos2Proc.Alos2ProcPublic import create_xml
from isceobj.Alos2Proc.Alos2ProcPublic import multilook
from isceobj.Alos2Proc.Alos2ProcPublic import cal_coherence_1
width = referenceSwath.numberOfSamples
length = referenceSwath.numberOfLines
lengthBurst = referenceSwath.burstSlcNumberOfLines
nBurst = referenceSwath.numberOfBursts
azsi = referenceSwath.azimuthLineInterval
tc = referenceSwath.burstCycleLength / referenceSwath.prf
bursts = [os.path.join(interferogramDir, interferogramPrefix+'_%02d.int'%(i+1)) for i in range(referenceSwath.numberOfBursts)]
####################################################
#input parameters
rgl = numberRangeLooks
azl = numberAzimuthLooks
cor_th = coherenceThreshold
nls0 = lengthBurst / (referenceSwath.burstSlcFirstLineOffsets[nBurst-1] / (nBurst-1.0))
print('number of looks of the ScanSAR system: {}'.format(nls0))
if numberLooksScanSAR != None:
nls = numberLooksScanSAR
else:
nls = int(nls0)
print('number of looks to be used: {}'.format(nls))
####################################################
#read burst interferograms
inf = np.zeros((length, width, nls), dtype=np.complex64)
cnt = np.zeros((length, width), dtype=np.int8)
for i in range(nBurst):
if (i+1)%5 == 0 or (i+1) == nBurst:
print('reading burst %02d' % (i+1))
burst = np.fromfile(bursts[i], dtype=np.complex64).reshape(lengthBurst, width)
#subset for the burst
cntBurst = cnt[0+referenceSwath.burstSlcFirstLineOffsets[i]:lengthBurst+referenceSwath.burstSlcFirstLineOffsets[i], :]
infBurst = inf[0+referenceSwath.burstSlcFirstLineOffsets[i]:lengthBurst+referenceSwath.burstSlcFirstLineOffsets[i], :, :]
#set number of non-zero pixels
cntBurst[np.nonzero(burst)] += 1
#get index
index1 = np.nonzero(np.logical_and(burst!=0, cntBurst<=nls))
index2 = index1 + (cntBurst[index1]-1,)
#set values
infBurst[index2] = burst[index1]
#number of looks for each sample
if keep:
nlFile = 'number_of_looks.nl'
cnt.astype(np.int8).tofile(nlFile)
create_xml(nlFile, width, length, 'byte')
if filt:
import scipy.signal as ss
filterKernel = np.ones((filtWinSizeAzimuth,filtWinSizeRange), dtype=np.float64)
for i in range(nls):
print('filtering look {}'.format(i+1))
flag = (inf[:,:,i]!=0)
#scale = ss.fftconvolve(flag, filterKernel, mode='same')
#inf[:,:,i] = flag*ss.fftconvolve(inf[:,:,i], filterKernel, mode='same') / (scale + (scale==0))
#this should be faster?
scale = ss.convolve2d(flag, filterKernel, mode='same')
inf[:,:,i] = flag*ss.convolve2d(inf[:,:,i], filterKernel, mode='same') / (scale + (scale==0))
#width and length after multilooking
widthm = int(width/rgl)
lengthm = int(length/azl)
#use the convention that ka > 0
ka = -np.polyval(referenceSwath.azimuthFmrateVsPixel[::-1], create_multi_index(width, rgl))
#get spectral diversity inteferogram
offset_sd=[]
for i in range(1, nls):
print('output spectral diversity inteferogram %d' % i)
#original spectral diversity inteferogram
sd = inf[:,:,0] * np.conj(inf[:,:,i])
#replace original amplitude with its square root
index = np.nonzero(sd!=0)
sd[index] /= np.sqrt(np.absolute(sd[index]))
sdFile = outputList[i-1]
sd.astype(np.complex64).tofile(sdFile)
create_xml(sdFile, width, length, 'int')
#multi look
sdm = multilook(sd, azl, rgl)
cor = cal_coherence_1(sdm)
#convert phase to offset
offset = np.angle(sdm)/(2.0 * np.pi * ka * tc * i)[None,:] / azsi
#compute offset using good samples
point_index = np.nonzero(np.logical_and(cor>=cor_th, np.angle(sdm)!=0))
npoint = round(np.size(point_index)/2)
if npoint < 20:
print('WARNING: too few good samples for spectral diversity at look {}: {}'.format(i, npoint))
offset_sd.append(0)
else:
offset_sd.append( np.sum(offset[point_index]*cor[point_index])/np.sum(cor[point_index]) )
if keep:
sdmFile = 'sd_%d_%drlks_%dalks.int' % (i, rgl, azl)
sdm.astype(np.complex64).tofile(sdmFile)
create_xml(sdmFile, widthm, lengthm, 'int')
corFile = 'sd_%d_%drlks_%dalks.cor' % (i, rgl, azl)
cor.astype(np.float32).tofile(corFile)
create_xml(corFile, widthm, lengthm, 'float')
offsetFile = 'sd_%d_%drlks_%dalks.off' % (i, rgl, azl)
offset.astype(np.float32).tofile(offsetFile)
create_xml(offsetFile, widthm, lengthm, 'float')
offset_mean = np.sum(np.array(offset_sd) * np.arange(1, nls)) / np.sum(np.arange(1, nls))
return offset_mean