ISCE_INSAR/components/isceobj/Alos2Proc/runRdr2Geo.py

234 lines
8.5 KiB
Python

#
# Author: Cunren Liang
# Copyright 2015-present, NASA-JPL/Caltech
#
import os
import logging
import isceobj
from isceobj.Alos2Proc.Alos2ProcPublic import waterBodyRadar
logger = logging.getLogger('isce.alos2insar.runRdr2Geo')
def runRdr2Geo(self):
'''compute lat/lon/hgt
'''
if hasattr(self, 'doInSAR'):
if not self.doInSAR:
return
catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
self.updateParamemetersFromUser()
referenceTrack = self._insar.loadTrack(reference=True)
demFile = os.path.abspath(self._insar.dem)
wbdFile = os.path.abspath(self._insar.wbd)
insarDir = 'insar'
os.makedirs(insarDir, exist_ok=True)
os.chdir(insarDir)
if self.useGPU and self._insar.hasGPU():
topoGPU(referenceTrack, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1, demFile,
self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.los)
else:
snwe = topoCPU(referenceTrack, self._insar.numberRangeLooks1, self._insar.numberAzimuthLooks1, demFile,
self._insar.latitude, self._insar.longitude, self._insar.height, self._insar.los)
waterBodyRadar(self._insar.latitude, self._insar.longitude, wbdFile, self._insar.wbdOut)
os.chdir('../')
catalog.printToLog(logger, "runRdr2Geo")
self._insar.procDoc.addAllFromCatalog(catalog)
def topoCPU(referenceTrack, numberRangeLooks, numberAzimuthLooks, demFile, latFile, lonFile, hgtFile, losFile):
import datetime
import isceobj
from zerodop.topozero import createTopozero
from isceobj.Planet.Planet import Planet
pointingDirection = {'right': -1, 'left' :1}
demImage = isceobj.createDemImage()
demImage.load(demFile + '.xml')
demImage.setAccessMode('read')
planet = Planet(pname='Earth')
topo = createTopozero()
topo.slantRangePixelSpacing = numberRangeLooks * referenceTrack.rangePixelSize
topo.prf = 1.0 / (numberAzimuthLooks*referenceTrack.azimuthLineInterval)
topo.radarWavelength = referenceTrack.radarWavelength
topo.orbit = referenceTrack.orbit
topo.width = referenceTrack.numberOfSamples
topo.length = referenceTrack.numberOfLines
topo.wireInputPort(name='dem', object=demImage)
topo.wireInputPort(name='planet', object=planet)
topo.numberRangeLooks = 1 #must be set as 1
topo.numberAzimuthLooks = 1 #must be set as 1 Cunren
topo.lookSide = pointingDirection[referenceTrack.pointingDirection]
topo.sensingStart = referenceTrack.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*referenceTrack.azimuthLineInterval)
topo.rangeFirstSample = referenceTrack.startingRange + (numberRangeLooks-1.0)/2.0*referenceTrack.rangePixelSize
topo.demInterpolationMethod='BIQUINTIC'
topo.latFilename = latFile
topo.lonFilename = lonFile
topo.heightFilename = hgtFile
topo.losFilename = losFile
#topo.incFilename = incName
#topo.maskFilename = mskName
topo.topo()
return list(topo.snwe)
def topoGPU(referenceTrack, numberRangeLooks, numberAzimuthLooks, demFile, latFile, lonFile, hgtFile, losFile):
'''
Try with GPU module.
'''
import datetime
import numpy as np
from isceobj.Planet.Planet import Planet
from zerodop.GPUtopozero.GPUtopozero import PyTopozero
from isceobj.Util.Poly2D import Poly2D
from iscesys import DateTimeUtil as DTU
pointingDirection = {'right': -1, 'left' :1}
#creat poynomials
polyDoppler = Poly2D(name='topsApp_dopplerPoly')
polyDoppler.setWidth(referenceTrack.numberOfSamples)
polyDoppler.setLength(referenceTrack.numberOfLines)
polyDoppler.setNormRange(1.0)
polyDoppler.setNormAzimuth(1.0)
polyDoppler.setMeanRange(0.0)
polyDoppler.setMeanAzimuth(0.0)
polyDoppler.initPoly(rangeOrder=0,azimuthOrder=0, coeffs=[[0.]])
polyDoppler.createPoly2D()
slantRangeImage = Poly2D()
slantRangeImage.setWidth(referenceTrack.numberOfSamples)
slantRangeImage.setLength(referenceTrack.numberOfLines)
slantRangeImage.setNormRange(1.0)
slantRangeImage.setNormAzimuth(1.0)
slantRangeImage.setMeanRange(0.)
slantRangeImage.setMeanAzimuth(0.)
slantRangeImage.initPoly(rangeOrder=1,azimuthOrder=0,
coeffs=[[referenceTrack.startingRange + (numberRangeLooks-1.0)/2.0*referenceTrack.rangePixelSize,numberRangeLooks * referenceTrack.rangePixelSize]])
slantRangeImage.createPoly2D()
#creat images
latImage = isceobj.createImage()
latImage.initImage(latFile, 'write', referenceTrack.numberOfSamples, 'DOUBLE')
latImage.createImage()
lonImage = isceobj.createImage()
lonImage.initImage(lonFile, 'write', referenceTrack.numberOfSamples, 'DOUBLE')
lonImage.createImage()
losImage = isceobj.createImage()
losImage.initImage(losFile, 'write', referenceTrack.numberOfSamples, 'FLOAT', bands=2, scheme='BIL')
losImage.setCaster('write', 'DOUBLE')
losImage.createImage()
heightImage = isceobj.createImage()
heightImage.initImage(hgtFile, 'write', referenceTrack.numberOfSamples, 'DOUBLE')
heightImage.createImage()
demImage = isceobj.createDemImage()
demImage.load(demFile + '.xml')
demImage.setCaster('read', 'FLOAT')
demImage.createImage()
#compute a few things
t0 = referenceTrack.sensingStart + datetime.timedelta(seconds=(numberAzimuthLooks-1.0)/2.0*referenceTrack.azimuthLineInterval)
orb = referenceTrack.orbit
pegHdg = np.radians( orb.getENUHeading(t0))
elp = Planet(pname='Earth').ellipsoid
#call gpu topo
topo = PyTopozero()
topo.set_firstlat(demImage.getFirstLatitude())
topo.set_firstlon(demImage.getFirstLongitude())
topo.set_deltalat(demImage.getDeltaLatitude())
topo.set_deltalon(demImage.getDeltaLongitude())
topo.set_major(elp.a)
topo.set_eccentricitySquared(elp.e2)
topo.set_rSpace(numberRangeLooks * referenceTrack.rangePixelSize)
topo.set_r0(referenceTrack.startingRange + (numberRangeLooks-1.0)/2.0*referenceTrack.rangePixelSize)
topo.set_pegHdg(pegHdg)
topo.set_prf(1.0 / (numberAzimuthLooks*referenceTrack.azimuthLineInterval))
topo.set_t0(DTU.seconds_since_midnight(t0))
topo.set_wvl(referenceTrack.radarWavelength)
topo.set_thresh(.05)
topo.set_demAccessor(demImage.getImagePointer())
topo.set_dopAccessor(polyDoppler.getPointer())
topo.set_slrngAccessor(slantRangeImage.getPointer())
topo.set_latAccessor(latImage.getImagePointer())
topo.set_lonAccessor(lonImage.getImagePointer())
topo.set_losAccessor(losImage.getImagePointer())
topo.set_heightAccessor(heightImage.getImagePointer())
topo.set_incAccessor(0)
topo.set_maskAccessor(0)
topo.set_numIter(25)
topo.set_idemWidth(demImage.getWidth())
topo.set_idemLength(demImage.getLength())
topo.set_ilrl(pointingDirection[referenceTrack.pointingDirection])
topo.set_extraIter(10)
topo.set_length(referenceTrack.numberOfLines)
topo.set_width(referenceTrack.numberOfSamples)
topo.set_nRngLooks(1)
topo.set_nAzLooks(1)
topo.set_demMethod(5) # BIQUINTIC METHOD
topo.set_orbitMethod(0) # HERMITE
# Need to simplify orbit stuff later
nvecs = len(orb._stateVectors)
topo.set_orbitNvecs(nvecs)
topo.set_orbitBasis(1) # Is this ever different?
topo.createOrbit() # Initializes the empty orbit to the right allocated size
count = 0
for sv in orb._stateVectors:
td = DTU.seconds_since_midnight(sv.getTime())
pos = sv.getPosition()
vel = sv.getVelocity()
topo.set_orbitVector(count,td,pos[0],pos[1],pos[2],vel[0],vel[1],vel[2])
count += 1
topo.runTopo()
#tidy up
latImage.addDescription('Pixel-by-pixel latitude in degrees.')
latImage.finalizeImage()
latImage.renderHdr()
lonImage.addDescription('Pixel-by-pixel longitude in degrees.')
lonImage.finalizeImage()
lonImage.renderHdr()
heightImage.addDescription('Pixel-by-pixel height in meters.')
heightImage.finalizeImage()
heightImage.renderHdr()
descr = '''Two channel Line-Of-Sight geometry image (all angles in degrees). Represents vector drawn from target to platform.
Channel 1: Incidence angle measured from vertical at target (always +ve).
Channel 2: Azimuth angle measured from North in Anti-clockwise direction.'''
losImage.setImageType('bil')
losImage.addDescription(descr)
losImage.finalizeImage()
losImage.renderHdr()
demImage.finalizeImage()
if slantRangeImage:
try:
slantRangeImage.finalizeImage()
except:
pass