ISCE_INSAR/components/zerodop/baseline/Baseline.py

284 lines
11 KiB
Python
Executable File

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# United States Government Sponsorship acknowledged. This software is subject to
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
# (No [Export] License Required except when exporting to an embargoed country,
# end user, or in support of a prohibited end use). By downloading this software,
# the user agrees to comply with all applicable U.S. export laws and regulations.
# The user has the responsibility to obtain export licenses, or other export
# authority as may be required before exporting this software to any 'EAR99'
# embargoed foreign country or citizen of those countries.
#
# Author: Giangi Sacco
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import math
import datetime
import logging
from iscesys.Component.Component import Component, Port
from isceobj.Orbit.Orbit import StateVector
import numpy as np
BASELINE_LOCATION = Component.Parameter('baselineLocation',
public_name = 'BASELINE_LOCATION',
default = 'all',
type=str,
mandatory=False,
doc = 'Location at which to compute baselines - "all" implies top, middle, bottom of master image, "top" implies near start of master image, "bottom" implies at bottom of master image, "middle" implies near middle of master image. To be used in case there is a large shift between images.')
class Baseline(Component):
family = 'baseline'
logging_name = 'isce.zerodop.baseline'
parameter_list = (BASELINE_LOCATION,)
# Calculate the baseline components between two frames
def baseline(self):
from isceobj.Util.geo.ellipsoid import Ellipsoid
from isceobj.Planet.Planet import Planet
for port in self.inputPorts:
port()
planet = Planet(pname='Earth')
refElp = Ellipsoid(a=planet.ellipsoid.a, e2=planet.ellipsoid.e2, model='WGS84')
if self.baselineLocation.lower() == 'all':
print('Using entire span of image for estimating baselines')
masterTime = [self.masterFrame.getSensingStart(),self.masterFrame.getSensingMid(),self.masterFrame.getSensingStop()]
elif self.baselineLocation.lower() == 'middle':
print('Estimating baselines around center of master image')
masterTime = [self.masterFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.masterFrame.getSensingMid(), self.masterFrame.getSensingMid() + datetime.timedelta(seconds=1.0)]
elif self.baselineLocation.lower() == 'top':
print('Estimating baselines at top of master image')
masterTime = [self.masterFrame.getSensingStart(), self.masterFrame.getSensingStart() + datetime.timedelta(seconds=1.0), self.masterFrame.getSensingStart() + datetime.timedelta(seconds=2.0)]
elif self.baselineLocation.lower() == 'bottom':
print('Estimating baselines at bottom of master image')
masterTime = [self.masterFrame.getSensingStop() - datetime.timedelta(seconds=2.0), self.masterFrame.getSensingStop() - datetime.timedelta(seconds=1.0), self.masterFrame.getSensingStop()]
else:
raise Exception('Unknown baseline location: {0}'.format(self.baselineLocation))
s = [0., 0., 0.]
bpar = []
bperp = []
azoff = []
rgoff = []
for i in range(3):
# Calculate the Baseline at the start of the scene, mid-scene, and the end of the scene
# First, get the position and velocity at the start of the scene
# Calculate the distance moved since the last baseline point
s[i] = (masterTime[i] - masterTime[0]).total_seconds()
masterSV = self.masterOrbit.interpolateOrbit(masterTime[i], method='hermite')
rng = self.startingRange1
target = self.masterOrbit.pointOnGround(masterTime[i], rng, side=self.masterFrame.getInstrument().getPlatform().pointingDirection)
slaveTime, slvrng = self.slaveOrbit.geo2rdr(target)
slaveSV = self.slaveOrbit.interpolateOrbit(slaveTime, method='hermite')
targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist())
mxyz = np.array(masterSV.getPosition())
mvel = np.array(masterSV.getVelocity())
sxyz = np.array(slaveSV.getPosition())
mvelunit = mvel / np.linalg.norm(mvel)
sxyz = sxyz - np.dot ( sxyz-mxyz, mvelunit) * mvelunit
aa = np.linalg.norm(sxyz-mxyz)
costheta = (rng*rng + aa*aa - slvrng*slvrng)/(2.*rng*aa)
# print(aa, costheta)
bpar.append(aa*costheta)
perp = aa * np.sqrt(1 - costheta*costheta)
direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel))
bperp.append(direction*perp)
####Azimuth offset
slvaz = (slaveTime - self.slaveFrame.sensingStart).total_seconds() * self.prf2
masaz = s[i] * self.prf1
azoff.append(slvaz - masaz)
####Range offset
slvrg = (slvrng - self.startingRange2)/self.rangePixelSize2
masrg = (rng - self.startingRange1) / self.rangePixelSize1
rgoff.append(slvrg - masrg)
# print(bpar)
# print(bperp)
#Calculating baseline
parBaselinePolynomialCoefficients = np.polyfit(s,bpar,2)
perpBaselinePolynomialCoefficients = np.polyfit(s,bperp,2)
# Populate class attributes
self.BparMean = parBaselinePolynomialCoefficients[-1]
self.BparRate = parBaselinePolynomialCoefficients[1]
self.BparAcc = parBaselinePolynomialCoefficients[0]
self.BperpMean = perpBaselinePolynomialCoefficients[-1]
self.BperpRate = perpBaselinePolynomialCoefficients[1]
self.BperpAcc = perpBaselinePolynomialCoefficients[0]
delta = (self.masterFrame.getSensingStart() - masterTime[0]).total_seconds()
self.BparTop = np.polyval(parBaselinePolynomialCoefficients, delta)
self.BperpTop = np.polyval(perpBaselinePolynomialCoefficients, delta)
delta = (self.masterFrame.getSensingStop() - masterTime[0]).total_seconds()
self.BparBottom = np.polyval(parBaselinePolynomialCoefficients, delta)
self.BperpBottom = np.polyval(perpBaselinePolynomialCoefficients, delta)
return azoff, rgoff
def setMasterRangePixelSize(self,pixelSize):
self.rangePixelSize1 = pixelSize
return
def setSlaveRangePixelSize(self,pixelSize):
self.rangePixelSize2 = pixelSize
return
def setMasterStartingRange(self,range):
self.startingRange1 = range
return
def setSlaveStartingRange(self,range):
self.startingRange2 = range
return
def setMasterPRF(self,prf):
self.prf1 = prf
return
def setSlavePRF(self,prf):
self.prf2 = prf
return
def getHBaselineTop(self):
return self.hBaselineTop
def getHBaselineRate(self):
return self.hBaselineRate
def getHBaselineAcc(self):
return self.hBaselineAcc
def getVBaselineTop(self):
return self.vBaselineTop
def getVBaselineRate(self):
return self.vBaselineRate
def getVBaselineAcc(self):
return self.vBaselineAcc
def getPBaselineTop(self):
return self.pBaselineTop
def getPBaselineBottom(self):
return self.pBaselineBottom
def addMasterFrame(self):
frame = self._inputPorts.getPort(name='masterFrame').getObject()
self.startingRange1 = frame.getStartingRange()
self.prf1 = frame.getInstrument().getPulseRepetitionFrequency()
self.rangePixelSize1 = frame.getInstrument().getRangePixelSize()
self.masterOrbit = frame.getOrbit()
self.masterFrame = frame
def addSlaveFrame(self):
frame = self._inputPorts.getPort(name='slaveFrame').getObject()
self.startingRange2 = frame.getStartingRange()
self.slaveOrbit = frame.getOrbit()
self.prf2 = frame.getInstrument().getPulseRepetitionFrequency()
self.rangePixelSize2 = frame.getInstrument().getRangePixelSize()
self.slaveFrame = frame
def __init__(self, name=''):
super(Baseline, self).__init__(family=self.__class__.family, name=name)
self.masterOrbit = None
self.slaveOrbit = None
self.masterFrame = None
self.slaveFrame = None
self.rangePixelSize1 = None
self.rangePixelSize2 = None
self.startingRange1 = None
self.startingRange2 = None
self.prf1 = None
self.prf2 = None
self.lookSide = None
self.BparMean = None
self.BparRate = None
self.BparAcc = None
self.BperpMean = None
self.BperpRate = None
self.BperpAcc = None
self.BperpTop = None
self.BperpBottom = None
self.BparTop = None
self.BperpBottom = None
self.logger = logging.getLogger('isce.zerodop.baseline')
self.createPorts()
# Satisfy the old Component
self.dictionaryOfOutputVariables = {}
self.dictionaryOfVariables = {}
self.descriptionOfVariables = {}
self.mandatoryVariables = []
self.optionalVariables = []
return None
def createPorts(self):
# Set input ports
# It looks like we really need two orbits, a time, range and azimuth pixel sizes
# the two starting ranges, a planet, and the two prfs
# These provide the orbits
# These provide the range and azimuth pixel sizes, starting ranges,
# satellite heights and times for the first lines
masterFramePort = Port(name='masterFrame',method=self.addMasterFrame)
slaveFramePort = Port(name='slaveFrame',method=self.addSlaveFrame)
self._inputPorts.add(masterFramePort)
self._inputPorts.add(slaveFramePort)
return None
def __str__(self):
retstr = "Initial Baseline estimates \n"
retlst = ()
retstr += "Parallel Baseline Top: %s\n"
retlst += (self.BparTop,)
retstr += "Perpendicular Baseline Top: %s\n"
retlst += (self.BperpTop,)
retstr += "Parallel Baseline Bottom: %s\n"
retlst += (self.BparBottom,)
retstr += "Perpendicular Baseline Bottom: %s \n"
retlst += (self.BperpBottom,)
return retstr % retlst