ISCE_INSAR/components/isceobj/Alos2burstProc/runPreprocessor.py

520 lines
26 KiB
Python

#
# Author: Cunren Liang
# Copyright 2015-present, NASA-JPL/Caltech
#
import os
import glob
import logging
import datetime
import numpy as np
import isceobj
import isceobj.Sensor.MultiMode as MultiMode
from isceobj.Planet.Planet import Planet
from isceobj.Alos2Proc.Alos2ProcPublic import runCmd
from isceobj.Alos2Proc.Alos2ProcPublic import getBboxRdr
from isceobj.Alos2Proc.Alos2ProcPublic import getBboxGeo
logger = logging.getLogger('isce.alos2burstinsar.runPreprocessor')
def runPreprocessor(self):
'''Extract images.
'''
catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
#find files
#actually no need to use absolute path any longer, since we are able to find file from vrt now. 27-JAN-2020, CRL.
#denseoffset may still need absolute path when making links
self.masterDir = os.path.abspath(self.masterDir)
self.slaveDir = os.path.abspath(self.slaveDir)
ledFilesMaster = sorted(glob.glob(os.path.join(self.masterDir, 'LED-ALOS2*-*-*')))
imgFilesMaster = sorted(glob.glob(os.path.join(self.masterDir, 'IMG-{}-ALOS2*-*-*'.format(self.masterPolarization.upper()))))
ledFilesSlave = sorted(glob.glob(os.path.join(self.slaveDir, 'LED-ALOS2*-*-*')))
imgFilesSlave = sorted(glob.glob(os.path.join(self.slaveDir, 'IMG-{}-ALOS2*-*-*'.format(self.slavePolarization.upper()))))
firstFrameMaster = ledFilesMaster[0].split('-')[-3][-4:]
firstFrameSlave = ledFilesSlave[0].split('-')[-3][-4:]
firstFrameImagesMaster = sorted(glob.glob(os.path.join(self.masterDir, 'IMG-{}-ALOS2*{}-*-*'.format(self.masterPolarization.upper(), firstFrameMaster))))
firstFrameImagesSlave = sorted(glob.glob(os.path.join(self.slaveDir, 'IMG-{}-ALOS2*{}-*-*'.format(self.slavePolarization.upper(), firstFrameSlave))))
#determin operation mode
masterMode = os.path.basename(ledFilesMaster[0]).split('-')[-1][0:3]
slaveMode = os.path.basename(ledFilesSlave[0]).split('-')[-1][0:3]
spotlightModes = ['SBS']
stripmapModes = ['UBS', 'UBD', 'HBS', 'HBD', 'HBQ', 'FBS', 'FBD', 'FBQ']
scansarNominalModes = ['WBS', 'WBD', 'WWS', 'WWD']
scansarWideModes = ['VBS', 'VBD']
scansarModes = ['WBS', 'WBD', 'WWS', 'WWD', 'VBS', 'VBD']
#usable combinations
if (masterMode in spotlightModes) and (slaveMode in spotlightModes):
self._insar.modeCombination = 0
elif (masterMode in stripmapModes) and (slaveMode in stripmapModes):
self._insar.modeCombination = 1
elif (masterMode in scansarNominalModes) and (slaveMode in scansarNominalModes):
self._insar.modeCombination = 21
elif (masterMode in scansarWideModes) and (slaveMode in scansarWideModes):
self._insar.modeCombination = 22
elif (masterMode in scansarNominalModes) and (slaveMode in stripmapModes):
self._insar.modeCombination = 31
elif (masterMode in scansarWideModes) and (slaveMode in stripmapModes):
self._insar.modeCombination = 32
else:
print('\n\nthis mode combination is not possible')
print('note that for ScanSAR-stripmap, ScanSAR must be master\n\n')
raise Exception('mode combination not supported')
if self._insar.modeCombination != 21:
print('\n\nburst processing only support {}\n\n'.format(scansarNominalModes))
raise Exception('mode combination not supported')
#determine default number of looks:
self._insar.numberRangeLooks1 = self.numberRangeLooks1
self._insar.numberAzimuthLooks1 = self.numberAzimuthLooks1
self._insar.numberRangeLooks2 = self.numberRangeLooks2
self._insar.numberAzimuthLooks2 = self.numberAzimuthLooks2
#the following two will be automatically determined by runRdrDemOffset.py
self._insar.numberRangeLooksSim = self.numberRangeLooksSim
self._insar.numberAzimuthLooksSim = self.numberAzimuthLooksSim
self._insar.numberRangeLooksIon = self.numberRangeLooksIon
self._insar.numberAzimuthLooksIon = self.numberAzimuthLooksIon
self._insar.numberRangeLooksSd = self.numberRangeLooksSd
self._insar.numberAzimuthLooksSd = self.numberAzimuthLooksSd
#force number of looks 1 to 1
self.numberRangeLooks1 = 1
self.numberAzimuthLooks1 = 1
self._insar.numberRangeLooks1 = 1
self._insar.numberAzimuthLooks1 = 1
if self._insar.numberRangeLooks2 == None:
self._insar.numberRangeLooks2 = 7
if self._insar.numberAzimuthLooks2 == None:
self._insar.numberAzimuthLooks2 = 2
if self._insar.numberRangeLooksIon == None:
self._insar.numberRangeLooksIon = 42
if self._insar.numberAzimuthLooksIon == None:
self._insar.numberAzimuthLooksIon = 12
if self._insar.numberRangeLooksSd == None:
self._insar.numberRangeLooksSd = 14
if self._insar.numberAzimuthLooksSd == None:
self._insar.numberAzimuthLooksSd = 4
#define processing file names
self._insar.masterDate = os.path.basename(ledFilesMaster[0]).split('-')[2]
self._insar.slaveDate = os.path.basename(ledFilesSlave[0]).split('-')[2]
self._insar.setFilename(masterDate=self._insar.masterDate, slaveDate=self._insar.slaveDate,
nrlks1=self._insar.numberRangeLooks1, nalks1=self._insar.numberAzimuthLooks1,
nrlks2=self._insar.numberRangeLooks2, nalks2=self._insar.numberAzimuthLooks2)
self._insar.setFilenameSd(masterDate=self._insar.masterDate, slaveDate=self._insar.slaveDate,
nrlks1=self._insar.numberRangeLooks1, nalks1=self._insar.numberAzimuthLooks1,
nrlks_sd=self._insar.numberRangeLooksSd, nalks_sd=self._insar.numberAzimuthLooksSd, nsd=3)
#find frame numbers
if (self._insar.modeCombination == 31) or (self._insar.modeCombination == 32):
if (self.masterFrames == None) or (self.slaveFrames == None):
raise Exception('for ScanSAR-stripmap inteferometry, you must set master and slave frame numbers')
#if not set, find frames automatically
if self.masterFrames == None:
self.masterFrames = []
for led in ledFilesMaster:
frameNumber = os.path.basename(led).split('-')[1][-4:]
if frameNumber not in self.masterFrames:
self.masterFrames.append(frameNumber)
if self.slaveFrames == None:
self.slaveFrames = []
for led in ledFilesSlave:
frameNumber = os.path.basename(led).split('-')[1][-4:]
if frameNumber not in self.slaveFrames:
self.slaveFrames.append(frameNumber)
#sort frames
self.masterFrames = sorted(self.masterFrames)
self.slaveFrames = sorted(self.slaveFrames)
#check number of frames
if len(self.masterFrames) != len(self.slaveFrames):
raise Exception('number of frames in master dir is not equal to number of frames \
in slave dir. please set frame number manually')
#find swath numbers (if not ScanSAR-ScanSAR, compute valid swaths)
if (self._insar.modeCombination == 0) or (self._insar.modeCombination == 1):
self.startingSwath = 1
self.endingSwath = 1
if self._insar.modeCombination == 21:
if self.startingSwath == None:
self.startingSwath = 1
if self.endingSwath == None:
self.endingSwath = 5
if self._insar.modeCombination == 22:
if self.startingSwath == None:
self.startingSwath = 1
if self.endingSwath == None:
self.endingSwath = 7
#determine starting and ending swaths for ScanSAR-stripmap, user's settings are overwritten
#use first frame to check overlap
if (self._insar.modeCombination == 31) or (self._insar.modeCombination == 32):
if self._insar.modeCombination == 31:
numberOfSwaths = 5
else:
numberOfSwaths = 7
overlapSubswaths = []
for i in range(numberOfSwaths):
overlapRatio = check_overlap(ledFilesMaster[0], firstFrameImagesMaster[i], ledFilesSlave[0], firstFrameImagesSlave[0])
if overlapRatio > 1.0 / 4.0:
overlapSubswaths.append(i+1)
if overlapSubswaths == []:
raise Exception('There is no overlap area between the ScanSAR-stripmap pair')
self.startingSwath = int(overlapSubswaths[0])
self.endingSwath = int(overlapSubswaths[-1])
#save the valid frames and swaths for future processing
self._insar.masterFrames = self.masterFrames
self._insar.slaveFrames = self.slaveFrames
self._insar.startingSwath = self.startingSwath
self._insar.endingSwath = self.endingSwath
##################################################
#1. create directories and read data
##################################################
self.master.configure()
self.slave.configure()
self.master.track.configure()
self.slave.track.configure()
for i, (masterFrame, slaveFrame) in enumerate(zip(self._insar.masterFrames, self._insar.slaveFrames)):
#frame number starts with 1
frameDir = 'f{}_{}'.format(i+1, masterFrame)
os.makedirs(frameDir, exist_ok=True)
os.chdir(frameDir)
#attach a frame to master and slave
frameObjMaster = MultiMode.createFrame()
frameObjSlave = MultiMode.createFrame()
frameObjMaster.configure()
frameObjSlave.configure()
self.master.track.frames.append(frameObjMaster)
self.slave.track.frames.append(frameObjSlave)
#swath number starts with 1
for j in range(self._insar.startingSwath, self._insar.endingSwath+1):
print('processing frame {} swath {}'.format(masterFrame, j))
swathDir = 's{}'.format(j)
os.makedirs(swathDir, exist_ok=True)
os.chdir(swathDir)
#attach a swath to master and slave
swathObjMaster = MultiMode.createSwath()
swathObjSlave = MultiMode.createSwath()
swathObjMaster.configure()
swathObjSlave.configure()
self.master.track.frames[-1].swaths.append(swathObjMaster)
self.slave.track.frames[-1].swaths.append(swathObjSlave)
#setup master
self.master.leaderFile = sorted(glob.glob(os.path.join(self.masterDir, 'LED-ALOS2*{}-*-*'.format(masterFrame))))[0]
if masterMode in scansarModes:
self.master.imageFile = sorted(glob.glob(os.path.join(self.masterDir, 'IMG-{}-ALOS2*{}-*-*-F{}'.format(self.masterPolarization.upper(), masterFrame, j))))[0]
else:
self.master.imageFile = sorted(glob.glob(os.path.join(self.masterDir, 'IMG-{}-ALOS2*{}-*-*'.format(self.masterPolarization.upper(), masterFrame))))[0]
self.master.outputFile = self._insar.masterSlc
self.master.useVirtualFile = self.useVirtualFile
#read master
(imageFDR, imageData)=self.master.readImage()
(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord)=self.master.readLeader()
self.master.setSwath(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
self.master.setFrame(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
self.master.setTrack(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
#setup slave
self.slave.leaderFile = sorted(glob.glob(os.path.join(self.slaveDir, 'LED-ALOS2*{}-*-*'.format(slaveFrame))))[0]
if slaveMode in scansarModes:
self.slave.imageFile = sorted(glob.glob(os.path.join(self.slaveDir, 'IMG-{}-ALOS2*{}-*-*-F{}'.format(self.slavePolarization.upper(), slaveFrame, j))))[0]
else:
self.slave.imageFile = sorted(glob.glob(os.path.join(self.slaveDir, 'IMG-{}-ALOS2*{}-*-*'.format(self.slavePolarization.upper(), slaveFrame))))[0]
self.slave.outputFile = self._insar.slaveSlc
self.slave.useVirtualFile = self.useVirtualFile
#read slave
(imageFDR, imageData)=self.slave.readImage()
(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord)=self.slave.readLeader()
self.slave.setSwath(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
self.slave.setFrame(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
self.slave.setTrack(leaderFDR, sceneHeaderRecord, platformPositionRecord, facilityRecord, imageFDR, imageData)
os.chdir('../')
self._insar.saveProduct(self.master.track.frames[-1], self._insar.masterFrameParameter)
self._insar.saveProduct(self.slave.track.frames[-1], self._insar.slaveFrameParameter)
os.chdir('../')
self._insar.saveProduct(self.master.track, self._insar.masterTrackParameter)
self._insar.saveProduct(self.slave.track, self._insar.slaveTrackParameter)
##################################################
#2. compute burst synchronization
##################################################
#burst synchronization may slowly change along a track as a result of the changing relative speed of the two flights
#in one frame, real unsynchronized time is the same for all swaths
unsynTime = 0
#real synchronized time/percentage depends on the swath burst length (synTime = burstlength - abs(unsynTime))
#synTime = 0
synPercentage = 0
numberOfFrames = len(self._insar.masterFrames)
numberOfSwaths = self._insar.endingSwath - self._insar.startingSwath + 1
for i, frameNumber in enumerate(self._insar.masterFrames):
for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)):
masterSwath = self.master.track.frames[i].swaths[j]
slaveSwath = self.slave.track.frames[i].swaths[j]
#using Piyush's code for computing range and azimuth offsets
midRange = masterSwath.startingRange + masterSwath.rangePixelSize * masterSwath.numberOfSamples * 0.5
midSensingStart = masterSwath.sensingStart + datetime.timedelta(seconds = masterSwath.numberOfLines * 0.5 / masterSwath.prf)
llh = self.master.track.orbit.rdr2geo(midSensingStart, midRange)
slvaz, slvrng = self.slave.track.orbit.geo2rdr(llh)
###Translate to offsets
#note that slave range pixel size and prf might be different from master, here we assume there is a virtual slave with same
#range pixel size and prf
rgoff = ((slvrng - slaveSwath.startingRange) / masterSwath.rangePixelSize) - masterSwath.numberOfSamples * 0.5
azoff = ((slvaz - slaveSwath.sensingStart).total_seconds() * masterSwath.prf) - masterSwath.numberOfLines * 0.5
#compute burst synchronization
#burst parameters for ScanSAR wide mode not estimed yet
if self._insar.modeCombination == 21:
scburstStartLine = (masterSwath.burstStartTime - masterSwath.sensingStart).total_seconds() * masterSwath.prf + azoff
#slave burst start times corresponding to master burst start times (100% synchronization)
scburstStartLines = np.arange(scburstStartLine - 100000*masterSwath.burstCycleLength, \
scburstStartLine + 100000*masterSwath.burstCycleLength, \
masterSwath.burstCycleLength)
dscburstStartLines = -((slaveSwath.burstStartTime - slaveSwath.sensingStart).total_seconds() * slaveSwath.prf - scburstStartLines)
#find the difference with minimum absolute value
unsynLines = dscburstStartLines[np.argmin(np.absolute(dscburstStartLines))]
if np.absolute(unsynLines) >= slaveSwath.burstLength:
synLines = 0
if unsynLines > 0:
unsynLines = slaveSwath.burstLength
else:
unsynLines = -slaveSwath.burstLength
else:
synLines = slaveSwath.burstLength - np.absolute(unsynLines)
unsynTime += unsynLines / masterSwath.prf
synPercentage += synLines / masterSwath.burstLength * 100.0
catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(synLines / masterSwath.burstLength * 100.0), 'runPreprocessor')
############################################################################################
#illustration of the sign of the number of unsynchronized lines (unsynLines)
#The convention is the same as ampcor offset, that is,
# slaveLineNumber = masterLineNumber + unsynLines
#
# |-----------------------| ------------
# | | ^
# | | |
# | | | unsynLines < 0
# | | |
# | | \ /
# | | |-----------------------|
# | | | |
# | | | |
# |-----------------------| | |
# Master Burst | |
# | |
# | |
# | |
# | |
# |-----------------------|
# Slave Burst
#
#
############################################################################################
##burst parameters for ScanSAR wide mode not estimed yet
elif self._insar.modeCombination == 31:
#scansar is master
scburstStartLine = (masterSwath.burstStartTime - masterSwath.sensingStart).total_seconds() * masterSwath.prf + azoff
#slave burst start times corresponding to master burst start times (100% synchronization)
for k in range(-100000, 100000):
saz_burstx = scburstStartLine + masterSwath.burstCycleLength * k
st_burstx = slaveSwath.sensingStart + datetime.timedelta(seconds=saz_burstx / masterSwath.prf)
if saz_burstx >= 0.0 and saz_burstx <= slaveSwath.numberOfLines -1:
slaveSwath.burstStartTime = st_burstx
slaveSwath.burstLength = masterSwath.burstLength
slaveSwath.burstCycleLength = masterSwath.burstCycleLength
slaveSwath.swathNumber = masterSwath.swathNumber
break
#unsynLines = 0
#synLines = masterSwath.burstLength
#unsynTime += unsynLines / masterSwath.prf
#synPercentage += synLines / masterSwath.burstLength * 100.0
catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(100.0), 'runPreprocessor')
else:
pass
#overwrite original frame parameter file
if self._insar.modeCombination == 31:
frameDir = 'f{}_{}'.format(i+1, frameNumber)
self._insar.saveProduct(self.slave.track.frames[i], os.path.join(frameDir, self._insar.slaveFrameParameter))
#getting average
if self._insar.modeCombination == 21:
unsynTime /= numberOfFrames*numberOfSwaths
synPercentage /= numberOfFrames*numberOfSwaths
elif self._insar.modeCombination == 31:
unsynTime = 0.
synPercentage = 100.
else:
pass
#record results
if (self._insar.modeCombination == 21) or (self._insar.modeCombination == 31):
self._insar.burstUnsynchronizedTime = unsynTime
self._insar.burstSynchronization = synPercentage
catalog.addItem('burst synchronization averaged', '%.1f%%'%(synPercentage), 'runPreprocessor')
##################################################
#3. compute baseline
##################################################
#only compute baseline at four corners and center of the master track
bboxRdr = getBboxRdr(self.master.track)
rangeMin = bboxRdr[0]
rangeMax = bboxRdr[1]
azimuthTimeMin = bboxRdr[2]
azimuthTimeMax = bboxRdr[3]
azimuthTimeMid = azimuthTimeMin+datetime.timedelta(seconds=(azimuthTimeMax-azimuthTimeMin).total_seconds()/2.0)
rangeMid = (rangeMin + rangeMax) / 2.0
points = [[azimuthTimeMin, rangeMin],
[azimuthTimeMin, rangeMax],
[azimuthTimeMax, rangeMin],
[azimuthTimeMax, rangeMax],
[azimuthTimeMid, rangeMid]]
Bpar = []
Bperp = []
#modify Piyush's code for computing baslines
refElp = Planet(pname='Earth').ellipsoid
for x in points:
masterSV = self.master.track.orbit.interpolate(x[0], method='hermite')
target = self.master.track.orbit.rdr2geo(x[0], x[1])
slvTime, slvrng = self.slave.track.orbit.geo2rdr(target)
slaveSV = self.slave.track.orbit.interpolateOrbit(slvTime, method='hermite')
targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist())
mxyz = np.array(masterSV.getPosition())
mvel = np.array(masterSV.getVelocity())
sxyz = np.array(slaveSV.getPosition())
aa = np.linalg.norm(sxyz-mxyz)
costheta = (x[1]*x[1] + aa*aa - slvrng*slvrng)/(2.*x[1]*aa)
Bpar.append(aa*costheta)
perp = aa * np.sqrt(1 - costheta*costheta)
direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel))
Bperp.append(direction*perp)
catalog.addItem('parallel baseline at upperleft of master track', Bpar[0], 'runPreprocessor')
catalog.addItem('parallel baseline at upperright of master track', Bpar[1], 'runPreprocessor')
catalog.addItem('parallel baseline at lowerleft of master track', Bpar[2], 'runPreprocessor')
catalog.addItem('parallel baseline at lowerright of master track', Bpar[3], 'runPreprocessor')
catalog.addItem('parallel baseline at center of master track', Bpar[4], 'runPreprocessor')
catalog.addItem('perpendicular baseline at upperleft of master track', Bperp[0], 'runPreprocessor')
catalog.addItem('perpendicular baseline at upperright of master track', Bperp[1], 'runPreprocessor')
catalog.addItem('perpendicular baseline at lowerleft of master track', Bperp[2], 'runPreprocessor')
catalog.addItem('perpendicular baseline at lowerright of master track', Bperp[3], 'runPreprocessor')
catalog.addItem('perpendicular baseline at center of master track', Bperp[4], 'runPreprocessor')
##################################################
#4. compute bounding box
##################################################
masterBbox = getBboxGeo(self.master.track)
slaveBbox = getBboxGeo(self.slave.track)
catalog.addItem('master bounding box', masterBbox, 'runPreprocessor')
catalog.addItem('slave bounding box', slaveBbox, 'runPreprocessor')
catalog.printToLog(logger, "runPreprocessor")
self._insar.procDoc.addAllFromCatalog(catalog)
def check_overlap(ldr_m, img_m, ldr_s, img_s):
from isceobj.Constants import SPEED_OF_LIGHT
rangeSamplingRateMaster, widthMaster, nearRangeMaster = read_param_for_checking_overlap(ldr_m, img_m)
rangeSamplingRateSlave, widthSlave, nearRangeSlave = read_param_for_checking_overlap(ldr_s, img_s)
farRangeMaster = nearRangeMaster + (widthMaster-1) * 0.5 * SPEED_OF_LIGHT / rangeSamplingRateMaster
farRangeSlave = nearRangeSlave + (widthSlave-1) * 0.5 * SPEED_OF_LIGHT / rangeSamplingRateSlave
#This should be good enough, although precise image offsets are not used.
if farRangeMaster <= nearRangeSlave:
overlapRatio = 0.0
elif farRangeSlave <= nearRangeMaster:
overlapRatio = 0.0
else:
# 0 1 2 3
ranges = np.array([nearRangeMaster, farRangeMaster, nearRangeSlave, farRangeSlave])
rangesIndex = np.argsort(ranges)
overlapRatio = ranges[rangesIndex[2]]-ranges[rangesIndex[1]] / (farRangeMaster-nearRangeMaster)
return overlapRatio
def read_param_for_checking_overlap(leader_file, image_file):
from isceobj.Sensor import xmlPrefix
import isceobj.Sensor.CEOS as CEOS
#read from leader file
fsampConst = { 104: 1.047915957140240E+08,
52: 5.239579785701190E+07,
34: 3.493053190467460E+07,
17: 1.746526595233730E+07 }
fp = open(leader_file,'rb')
leaderFDR = CEOS.CEOSDB(xml=os.path.join(xmlPrefix,'alos2_slc/leader_file.xml'),dataFile=fp)
leaderFDR.parse()
fp.seek(leaderFDR.getEndOfRecordPosition())
sceneHeaderRecord = CEOS.CEOSDB(xml=os.path.join(xmlPrefix,'alos2_slc/scene_record.xml'),dataFile=fp)
sceneHeaderRecord.parse()
fp.seek(sceneHeaderRecord.getEndOfRecordPosition())
fsamplookup = int(sceneHeaderRecord.metadata['Range sampling rate in MHz'])
rangeSamplingRate = fsampConst[fsamplookup]
fp.close()
#print('{}'.format(rangeSamplingRate))
#read from image file
fp = open(image_file, 'rb')
imageFDR = CEOS.CEOSDB(xml=os.path.join(xmlPrefix,'alos2_slc/image_file.xml'), dataFile=fp)
imageFDR.parse()
fp.seek(imageFDR.getEndOfRecordPosition())
imageData = CEOS.CEOSDB(xml=os.path.join(xmlPrefix,'alos2_slc/image_record.xml'), dataFile=fp)
imageData.parseFast()
width = imageFDR.metadata['Number of pixels per line per SAR channel']
near_range = imageData.metadata['Slant range to 1st data sample']
fp.close()
#print('{}'.format(width))
#print('{}'.format(near_range))
return (rangeSamplingRate, width, near_range)