ISCE_INSAR/contrib/stack/stripmapStack/estimateIono.py

630 lines
27 KiB
Python
Executable File

#
# Author: Heresh Fattahi, Cunren Liang
#
#
import argparse
import logging
import os
import isce
import isceobj
from isceobj.Constants import SPEED_OF_LIGHT
import numpy as np
from osgeo import gdal
import shelve
from scipy import ndimage
try:
import cv2
except ImportError:
print('OpenCV2 does not appear to be installed / is not importable.')
print('OpenCV2 is needed for this step. You may experience failures ...')
logger = logging.getLogger('isce.insar.runDispersive')
def createParser():
'''
Command line parser.
'''
parser = argparse.ArgumentParser( description='split the range spectrum of SLC')
parser.add_argument('-L', '--low_band_igram_prefix', dest='lowBandIgramPrefix', type=str, required=True,
help='prefix of unwrapped low band interferogram')
parser.add_argument('-Lu', '--low_band_igram_unw_method', dest='lowBandIgramUnwMethod', type=str, required=True,
help='unwrap method used for low band interferogram')
parser.add_argument('-H', '--high_band_igram_prefix', dest='highBandIgramPrefix', type=str, required=True,
help='prefix of unwrapped high band interferogram')
parser.add_argument('-Hu', '--high_band_igram_unw_method', dest='highBandIgramUnwMethod', type=str, required=True,
help='unwrap method used for high band interferogram')
parser.add_argument('-o', '--outDir', dest='outDir', type=str, required=True,
help='output directory')
parser.add_argument('-a', '--low_band_shelve', dest='lowBandShelve', type=str, default=None,
help='shelve file used to extract metadata')
parser.add_argument('-b', '--high_band_shelve', dest='highBandShelve', type=str, default=None,
help='shelve file used to extract metadata')
parser.add_argument('-c', '--full_band_coherence', dest='fullBandCoherence', type=str, default=None,
help='full band coherence')
parser.add_argument('--low_band_coherence', dest='lowBandCoherence', type=str, default=None,
help='low band coherence')
parser.add_argument('--high_band_coherence', dest='highBandCoherence', type=str, default=None,
help='high band coherence')
parser.add_argument('--azimuth_looks', dest='azLooks', type=float, default=14.0,
help='high band coherence')
parser.add_argument('--range_looks', dest='rngLooks', type=float, default=4.0,
help='high band coherence')
parser.add_argument('--dispersive_filter_mask_type', dest='dispersive_filter_mask_type', type=str, default='connected_components',
help='mask type for iterative low-pass filtering: connected_components or coherence')
parser.add_argument('--dispersive_filter_coherence_threshold', dest='dispersive_filter_coherence_threshold', type=float, default=0.5,
help='coherence threshold when mask type for iterative low-pass filtering is coherence')
#parser.add_argument('-f', '--filter_sigma', dest='filterSigma', type=float, default=100.0,
# help='sigma of the gaussian filter')
parser.add_argument('--filter_sigma_x', dest='kernel_sigma_x', type=float, default=100.0,
help='sigma of the gaussian filter in X direction, default=100')
parser.add_argument('--filter_sigma_y', dest='kernel_sigma_y', type=float, default=100.0,
help='sigma of the gaussian filter in Y direction, default=100')
parser.add_argument('--filter_size_x', dest='kernel_x_size', type=float, default=800.0,
help='size of the gaussian kernel in X direction, default = 800')
parser.add_argument('--filter_size_y', dest='kernel_y_size', type=float, default=800.0,
help='size of the gaussian kernel in Y direction, default=800')
parser.add_argument('--filter_kernel_rotation', dest='kernel_rotation', type=float, default=0.0,
help='rotation angle of the filter kernel in degrees (default = 0.0)')
parser.add_argument('-i', '--iteration', dest='dispersive_filter_iterations', type=int, default=5,
help='number of iteration for filtering and interpolation')
parser.add_argument('-m', '--mask_file', dest='maskFile', type=str, default=None,
help='a mask file with one for valid pixels and zero for non valid pixels.')
parser.add_argument('-u', '--outlier_sigma', dest='outlierSigma', type=float, default=1.0,
help='number of sigma for removing outliers. data outside (avergae +/- u*sigma) are considered as outliers. sigma is calculated from data/coherence. u is the user input. default u =1')
parser.add_argument('-p', '--min_pixel_connected_component', dest='minPixelConnComp', type=int, default=1000.0,
help='minimum number of pixels in a connected component to consider the component as valid. components with less pixel will be masked out')
parser.add_argument('-r', '--ref', dest='ref', type=str, default=None, help='refernce pixel : row, column')
return parser
def cmdLineParse(iargs = None):
parser = createParser()
return parser.parse_args(args=iargs)
def getValue(dataFile, band, y_ref, x_ref):
ds = gdal.Open(dataFile, gdal.GA_ReadOnly)
length = ds.RasterYSize
width = ds.RasterXSize
b = ds.GetRasterBand(band)
ref = b.ReadAsArray(x_ref,y_ref,1,1)
ds = None
return ref[0][0]
def check_consistency(lowBandIgram, highBandIgram, outputDir):
jumpFile = os.path.join(outputDir , "jumps.bil")
cmd = 'imageMath.py -e="round((a_1-b_1)/(2.0*PI))" --a={0} --b={1} -o {2} -t float -s BIL'.format(lowBandIgram, highBandIgram, jumpFile)
print(cmd)
os.system(cmd)
return jumpFile
def dispersive_nonDispersive(lowBandIgram, highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpFile, y_ref=None, x_ref=None, m=None , d=None):
if y_ref and x_ref:
refL = getValue(lowBandIgram, 2, y_ref, x_ref)
refH = getValue(highBandIgram, 2, y_ref, x_ref)
else:
refL = 0.0
refH = 0.0
# m : common phase unwrapping error
# d : differential phase unwrapping error
if m and d:
coef = (fL*fH)/(f0*(fH**2 - fL**2))
#cmd = 'imageMath.py -e="{0}*((a_1-{8}-2*PI*c)*{1}-(b_1-{9}-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} -o {7} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, m , d, outDispersive, refL, refH)
cmd = 'imageMath.py -e="{0}*((a_1-2*PI*c)*{1}-(b_1+(2.0*PI*g)-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} --g={7} -o {8} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, m , d, jumpFile, outDispersive)
print(cmd)
os.system(cmd)
coefn = f0/(fH**2-fL**2)
#cmd = 'imageMath.py -e="{0}*((a_1-{8}-2*PI*c)*{1}-(b_1-{9}-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} -o {7} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, m , d, outNonDispersive, refH, refL)
cmd = 'imageMath.py -e="{0}*((a_1+(2.0*PI*g)-2*PI*c)*{1}-(b_1-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} --g={7} -o {8} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, m , d, jumpFile, outNonDispersive)
print(cmd)
os.system(cmd)
else:
coef = (fL*fH)/(f0*(fH**2 - fL**2))
#cmd = 'imageMath.py -e="{0}*((a_1-{6})*{1}-(b_1-{7})*{2})" --a={3} --b={4} -o {5} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, outDispersive, refL, refH)
cmd = 'imageMath.py -e="{0}*(a_1*{1}-(b_1+2.0*PI*c)*{2})" --a={3} --b={4} --c={5} -o {6} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, jumpFile, outDispersive)
print(cmd)
os.system(cmd)
coefn = f0/(fH**2-fL**2)
#cmd = 'imageMath.py -e="{0}*((a_1-{6})*{1}-(b_1-{7})*{2})" --a={3} --b={4} -o {5} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, outNonDispersive, refH, refL)
cmd = 'imageMath.py -e="{0}*((a_1+2.0*PI*c)*{1}-(b_1)*{2})" --a={3} --b={4} --c={5} -o {6} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, jumpFile, outNonDispersive)
print(cmd)
os.system(cmd)
return None
def theoretical_variance_fromSubBands(inps, f0, fL, fH, B, Sig_phi_iono, Sig_phi_nonDisp,N):
# Calculating the theoretical variance of the
# ionospheric phase based on the coherence of
# the sub-band interferograns
#ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.lowBandSlcDirname)
lowBandCoherence = inps.lowBandCoherence
Sig_phi_L = inps.Sig_phi_L
#ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.highBandSlcDirname)
#highBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".unw")
#ifgDirname = os.path.dirname(self.insar.lowBandIgram)
#lowBandCoherence = os.path.join(ifgDirname , self.insar.coherenceFilename)
#Sig_phi_L = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".sig")
#ifgDirname = os.path.dirname(self.insar.highBandIgram)
#highBandCoherence = os.path.join(ifgDirname , self.insar.coherenceFilename)
#Sig_phi_H = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".sig")
highBandCoherence = inps.highBandCoherence
Sig_phi_H = inps.Sig_phi_H
#N = self.numberAzimuthLooks*self.numberRangeLooks
#PI = np.pi
#fL,f0,fH,B = getBandFrequencies(inps)
#cL = read(inps.lowBandCoherence,bands=[1])
#cL = cL[0,:,:]
#cL[cL==0.0]=0.001
cmd = 'imageMath.py -e="sqrt(1-a**2)/a/sqrt(2.0*{0})" --a={1} -o {2} -t float -s BIL'.format(N, lowBandCoherence, Sig_phi_L)
print(cmd)
os.system(cmd)
#Sig_phi_L = np.sqrt(1-cL**2)/cL/np.sqrt(2.*N)
#cH = read(inps.highBandCoherence,bands=[1])
#cH = cH[0,:,:]
#cH[cH==0.0]=0.001
cmd = 'imageMath.py -e="sqrt(1-a**2)/a/sqrt(2.0*{0})" --a={1} -o {2} -t float -s BIL'.format(N, highBandCoherence, Sig_phi_H)
print(cmd)
os.system(cmd)
#Sig_phi_H = np.sqrt(1-cH**2)/cH/np.sqrt(2.0*N)
coef = (fL*fH)/(f0*(fH**2 - fL**2))
cmd = 'imageMath.py -e="sqrt(({0}**2)*({1}**2)*(a**2) + ({0}**2)*({2}**2)*(b**2))" --a={3} --b={4} -o {5} -t float -s BIL'.format(coef, fL, fH, Sig_phi_L, Sig_phi_H, Sig_phi_iono)
os.system(cmd)
#Sig_phi_iono = np.sqrt((coef**2)*(fH**2)*Sig_phi_H**2 + (coef**2)*(fL**2)*Sig_phi_L**2)
#length, width = Sig_phi_iono.shape
#outFileIono = os.path.join(inps.outDir, 'Sig_iono.bil')
#write(Sig_phi_iono, outFileIono, 1, 6)
#write_xml(outFileIono, length, width)
coef_non = f0/(fH**2 - fL**2)
cmd = 'imageMath.py -e="sqrt(({0}**2)*({1}**2)*(a**2) + ({0}**2)*({2}**2)*(b**2))" --a={3} --b={4} -o {5} -t float -s BIL'.format(coef_non, fL, fH, Sig_phi_L, Sig_phi_H, Sig_phi_nonDisp)
os.system(cmd)
#Sig_phi_non_dis = np.sqrt((coef_non**2) * (fH**2) * Sig_phi_H**2 + (coef_non**2) * (fL**2) * Sig_phi_L**2)
#outFileNonDis = os.path.join(inps.outDir, 'Sig_nonDis.bil')
#write(Sig_phi_non_dis, outFileNonDis, 1, 6)
#write_xml(outFileNonDis, length, width)
return None #Sig_phi_iono, Sig_phi_nonDisp
def lowPassFilter(dataFile, sigDataFile, maskFile, Sx, Sy, sig_x, sig_y, iteration=5, theta=0.0):
ds = gdal.Open(dataFile + '.vrt', gdal.GA_ReadOnly)
length = ds.RasterYSize
width = ds.RasterXSize
dataIn = np.memmap(dataFile, dtype=np.float32, mode='r', shape=(length,width))
sigData = np.memmap(sigDataFile, dtype=np.float32, mode='r', shape=(length,width))
mask = np.memmap(maskFile, dtype=np.byte, mode='r', shape=(length,width))
dataF, sig_dataF = iterativeFilter(dataIn[:,:], mask[:,:], sigData[:,:], iteration, Sx, Sy, sig_x, sig_y, theta)
filtDataFile = dataFile + ".filt"
sigFiltDataFile = sigDataFile + ".filt"
filtData = np.memmap(filtDataFile, dtype=np.float32, mode='w+', shape=(length,width))
filtData[:,:] = dataF[:,:]
filtData.flush()
sigFilt= np.memmap(sigFiltDataFile, dtype=np.float32, mode='w+', shape=(length,width))
sigFilt[:,:] = sig_dataF[:,:]
sigFilt.flush()
# writing xml and vrt files
write_xml(filtDataFile, width, length, 1, "FLOAT", "BIL")
write_xml(sigFiltDataFile, width, length, 1, "FLOAT", "BIL")
return filtDataFile, sigFiltDataFile
def write_xml(fileName,width,length,bands,dataType,scheme):
img = isceobj.createImage()
img.setFilename(fileName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = bands
img.dataType = dataType
img.scheme = scheme
img.renderHdr()
img.renderVRT()
return None
def iterativeFilter(dataIn, mask, Sig_dataIn, iteration, Sx, Sy, sig_x, sig_y, theta=0.0):
data = np.zeros(dataIn.shape)
data[:,:] = dataIn[:,:]
Sig_data = np.zeros(dataIn.shape)
Sig_data[:,:] = Sig_dataIn[:,:]
print ('masking the data')
data[mask==0]=np.nan
Sig_data[mask==0]=np.nan
print ('Filling the holes with nearest neighbor interpolation')
dataF = fill(data)
Sig_data = fill(Sig_data)
print ('Low pass Gaussian filtering the interpolated data')
dataF, Sig_dataF = Filter(dataF, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0)
for i in range(iteration):
print ('iteration: ', i , ' of ',iteration)
print ('masking the interpolated and filtered data')
dataF[mask==0]=np.nan
print('Filling the holes with nearest neighbor interpolation of the filtered data from previous step')
dataF = fill(dataF)
print('Replace the valid pixels with original unfiltered data')
dataF[mask==1]=data[mask==1]
dataF, Sig_dataF = Filter(dataF, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0)
return dataF, Sig_dataF
def Filter(data, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0):
kernel = Gaussian_kernel(Sx, Sy, sig_x, sig_y) #(800, 800, 15.0, 100.0)
kernel = rotate(kernel , theta)
data = data/Sig_data**2
data = cv2.filter2D(data,-1,kernel)
W1 = cv2.filter2D(1.0/Sig_data**2,-1,kernel)
W2 = cv2.filter2D(1.0/Sig_data**2,-1,kernel**2)
#data = ndimage.convolve(data,kernel, mode='nearest')
#W1 = ndimage.convolve(1.0/Sig_data**2,kernel, mode='nearest')
#W2 = ndimage.convolve(1.0/Sig_data**2,kernel**2, mode='nearest')
return data/W1, np.sqrt(W2/(W1**2))
def Gaussian_kernel(Sx, Sy, sig_x,sig_y):
if np.mod(Sx,2) == 0:
Sx = Sx + 1
if np.mod(Sy,2) ==0:
Sy = Sy + 1
x,y = np.meshgrid(np.arange(Sx),np.arange(Sy))
x = x + 1
y = y + 1
x0 = (Sx+1)/2
y0 = (Sy+1)/2
fx = ((x-x0)**2.)/(2.*sig_x**2.)
fy = ((y-y0)**2.)/(2.*sig_y**2.)
k = np.exp(-1.0*(fx+fy))
a = 1./np.sum(k)
k = a*k
return k
def rotate(k , theta):
Sy,Sx = np.shape(k)
x,y = np.meshgrid(np.arange(Sx),np.arange(Sy))
x = x + 1
y = y + 1
x0 = (Sx+1)/2
y0 = (Sy+1)/2
x = x - x0
y = y - y0
A=np.vstack((x.flatten(), y.flatten()))
if theta!=0:
theta = theta*np.pi/180.
R = np.array([[np.cos(theta), -1.0*np.sin(theta)],[np.sin(theta), np.cos(theta)]])
AR = np.dot(R,A)
xR = AR[0,:].reshape(Sy,Sx)
yR = AR[1,:].reshape(Sy,Sx)
k = mlab.griddata(x.flatten(),y.flatten(),k.flatten(),xR,yR, interp='linear')
#k = f(xR, yR)
k = k.data
k[np.isnan(k)] = 0.0
a = 1./np.sum(k)
k = a*k
return k
def fill(data, invalid=None):
"""
Replace the value of invalid 'data' cells (indicated by 'invalid')
by the value of the nearest valid data cell
Input:
data: numpy array of any dimension
invalid: a binary array of same shape as 'data'.
data value are replaced where invalid is True
If None (default), use: invalid = np.isnan(data)
Output:
Return a filled array.
"""
if invalid is None: invalid = np.isnan(data)
ind = ndimage.distance_transform_edt(invalid,
return_distances=False,
return_indices=True)
return data[tuple(ind)]
def getMask(inps, maskFile):
lowBandIgram = inps.lowBandIgram
lowBandCor = inps.lowBandCoherence #lowBandIgram.replace("_snaphu.unw", ".cor")
highBandIgram = inps.highBandIgram
highBandCor = inps.highBandCoherence #highBandIgram.replace("_snaphu.unw", ".cor")
if inps.dispersive_filter_mask_type == "coherence":
print ('generating a mask based on coherence files of sub-band interferograms with a threshold of {0}'.format(inps.dispersive_filter_coherence_threshold))
cmd = 'imageMath.py -e="(a>{0})*(b>{0})" --a={1} --b={2} -t byte -s BIL -o {3}'.format(inps.dispersive_filter_coherence_threshold, lowBandCor, highBandCor, maskFile)
os.system(cmd)
elif (inps.dispersive_filter_mask_type == "connected_components") and ((os.path.exists(lowBandIgram + '.conncomp')) and (os.path.exists(highBandIgram + '.conncomp'))):
# If connected components from snaphu exists, let's get a mask based on that.
# Regions of zero are masked out. Let's assume that islands have been connected.
print ('generating a mask based on .conncomp files')
cmd = 'imageMath.py -e="(a>0)*(b>0)" --a={0} --b={1} -t byte -s BIL -o {2}'.format(lowBandIgram + '.conncomp', highBandIgram + '.conncomp', maskFile)
os.system(cmd)
else:
print ('generating a mask based on unwrapped files. Pixels with phase = 0 are masked out.')
cmd = 'imageMath.py -e="(a_1!=0)*(b_1!=0)" --a={0} --b={1} -t byte -s BIL -o {2}'.format(lowBandIgram , highBandIgram , maskFile)
os.system(cmd)
def unwrapp_error_correction(f0, B, dispFile, nonDispFile,lowBandIgram, highBandIgram, jumpsFile, y_ref=None, x_ref=None):
dFile = os.path.join(os.path.dirname(dispFile) , "dJumps.bil")
mFile = os.path.join(os.path.dirname(dispFile) , "mJumps.bil")
if y_ref and x_ref:
refL = getValue(lowBandIgram, 2, y_ref, x_ref)
refH = getValue(highBandIgram, 2, y_ref, x_ref)
else:
refL = 0.0
refH = 0.0
#cmd = 'imageMath.py -e="round(((a_1-{7}) - (b_1-{8}) - (2.0*{0}/3.0/{1})*c + (2.0*{0}/3.0/{1})*f )/2.0/PI)" --a={2} --b={3} --c={4} --f={5} -o {6} -t float32 -s BIL'.format(B, f0, highBandIgram, lowBandIgram, nonDispFile, dispFile, dFile, refH, refL)
cmd = 'imageMath.py -e="round(((a_1+(2.0*PI*g)) - (b_1) - (2.0*{0}/3.0/{1})*c + (2.0*{0}/3.0/{1})*f )/2.0/PI)" --a={2} --b={3} --c={4} --f={5} --g={6} -o {7} -t float32 -s BIL'.format(B, f0, highBandIgram, lowBandIgram, nonDispFile, dispFile, jumpsFile, dFile)
print(cmd)
os.system(cmd)
#d = (phH - phL - (2.*B/3./f0)*ph_nondis + (2.*B/3./f0)*ph_iono )/2./PI
#d = np.round(d)
#cmd = 'imageMath.py -e="round(((a_1 - {6}) + (b_1-{7}) - 2.0*c - 2.0*f )/4.0/PI - g/2)" --a={0} --b={1} --c={2} --f={3} --g={4} -o {5} -t float32 -s BIL'.format(lowBandIgram, highBandIgram, nonDispFile, dispFile, dFile, mFile, refL, refH)
cmd = 'imageMath.py -e="round(((a_1 ) + (b_1+(2.0*PI*k)) - 2.0*c - 2.0*f )/4.0/PI - g/2)" --a={0} --b={1} --c={2} --f={3} --g={4} --k={5} -o {6} -t float32 -s BIL'.format(lowBandIgram, highBandIgram, nonDispFile, dispFile, dFile, jumpsFile, mFile)
print(cmd)
os.system(cmd)
#m = (phL + phH - 2*ph_nondis - 2*ph_iono)/4./PI - d/2.
#m = np.round(m)
return mFile , dFile
def getBandFrequencies(inps):
with shelve.open(inps.lowBandShelve, flag='r') as db:
frameL = db['frame']
wvl0 = frameL.radarWavelegth
wvlL = frameL.subBandRadarWavelength
with shelve.open(inps.highBandShelve, flag='r') as db:
frameH = db['frame']
wvlH = frameH.subBandRadarWavelength
pulseLength = frameH.instrument.pulseLength
chirpSlope = frameH.instrument.chirpSlope
# Total Bandwidth
B = np.abs(chirpSlope)*pulseLength
return wvl0, wvlL, wvlH, B
def main(iargs=None):
inps = cmdLineParse(iargs)
'''
ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.lowBandSlcDirname)
lowBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename)
if '.flat' in lowBandIgram:
lowBandIgram = lowBandIgram.replace('.flat', '.unw')
elif '.int' in lowBandIgram:
lowBandIgram = lowBandIgram.replace('.int', '.unw')
else:
lowBandIgram += '.unw'
ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.highBandSlcDirname)
highBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename)
if '.flat' in highBandIgram:
highBandIgram = highBandIgram.replace('.flat', '.unw')
elif '.int' in highBandIgram:
highBandIgram = highBandIgram.replace('.int', '.unw')
else:
highBandIgram += '.unw'
'''
##########
# construct the unwrap and unwrap connected component filenames for both high and low band interferogams
# allow for different connected component files for the low and high band images depending what the user preferred
# for snaphu2stage: use snaphu connected component
# for snaphu: use snaphu connected component
# for icu: use icu connected component
# lowband file
if inps.lowBandIgramUnwMethod == 'snaphu' or inps.lowBandIgramUnwMethod == 'snaphu2stage':
lowBandconncomp = inps.lowBandIgramPrefix + '_snaphu.unw.conncomp'
elif inps.lowBandIgramUnwMethod == 'icu':
lowBandconncomp = inps.lowBandIgramPrefix + '_icu.unw.conncomp'
inps.lowBandconncomp = lowBandconncomp
inps.lowBandIgram = inps.lowBandIgramPrefix + '_' + inps.lowBandIgramUnwMethod + '.unw'
# highband file
if inps.highBandIgramUnwMethod == 'snaphu' or inps.highBandIgramUnwMethod == 'snaphu2stage':
highBandconncomp = inps.highBandIgramPrefix + '_snaphu.unw.conncomp'
elif inps.highBandIgramUnwMethod == 'icu':
highBandconncomp = inps.highBandIgramPrefix + '_icu.unw.conncomp'
inps.highBandconncomp = highBandconncomp
inps.highBandIgram = inps.highBandIgramPrefix + '_' + inps.highBandIgramUnwMethod + '.unw'
# print a summary for the user
print('Files to be used for estimating ionosphere:')
print('**Low band files:')
print(inps.lowBandIgram)
print(inps.lowBandconncomp)
print('**High band files:')
print(inps.highBandIgram)
print(inps.highBandconncomp)
# generate the output directory if it does not exist yet, and back-up the shelve files
os.makedirs(inps.outDir, exist_ok=True)
lowBandShelve = os.path.join(inps.outDir, 'lowBandShelve')
highBandShelve = os.path.join(inps.outDir, 'highBandShelve')
os.makedirs(lowBandShelve, exist_ok=True)
os.makedirs(highBandShelve, exist_ok=True)
cmdCp = 'cp ' + inps.lowBandShelve + '* ' + lowBandShelve
os.system(cmdCp)
cmdCp = 'cp ' + inps.highBandShelve + '* ' + highBandShelve
os.system(cmdCp)
inps.lowBandShelve = os.path.join(lowBandShelve, 'data')
inps.highBandShelve = os.path.join(highBandShelve, 'data')
'''
outputDir = self.insar.ionosphereDirname
os.makedirs(outputDir, exist_ok=True)
'''
outDispersive = os.path.join(inps.outDir, 'iono.bil')
sigmaDispersive = outDispersive + ".sig"
outNonDispersive = os.path.join(inps.outDir, 'nonDispersive.bil')
sigmaNonDispersive = outNonDispersive + ".sig"
inps.Sig_phi_L = os.path.join(inps.outDir, 'lowBand.Sigma')
inps.Sig_phi_H = os.path.join(inps.outDir, 'highBand.Sigma')
maskFile = os.path.join(inps.outDir, "mask.bil")
#referenceFrame = self._insar.loadProduct( self._insar.referenceSlcCropProduct)
wvl, wvlL, wvlH, B = getBandFrequencies(inps)
f0 = SPEED_OF_LIGHT/wvl
fL = SPEED_OF_LIGHT/wvlL
fH = SPEED_OF_LIGHT/wvlH
###Determine looks
#azLooks, rgLooks = self.insar.numberOfLooks( referenceFrame, self.posting,
# self.numberAzimuthLooks, self.numberRangeLooks)
#########################################################
# make sure the low-band and high-band interferograms have consistent unwrapping errors.
# For this we estimate jumps as the difference of lowBand and highBand phases divided by 2PI
# The assumprion is that bothe interferograms are flattened and the phase difference between them
# is less than 2PI. This assumprion is valid for current sensors. It needs to be evaluated for
# future sensors like NISAR.
jumpsFile = check_consistency(inps.lowBandIgram, inps.highBandIgram, inps.outDir)
#########################################################
# estimating the dispersive and non-dispersive components
dispersive_nonDispersive(inps.lowBandIgram, inps.highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpsFile)
# generating a mask which will help filtering the estimated dispersive and non-dispersive phase
getMask(inps, maskFile)
# Calculating the theoretical standard deviation of the estimation based on the coherence of the interferograms
theoretical_variance_fromSubBands(inps, f0, fL, fH, B, sigmaDispersive, sigmaNonDispersive, inps.azLooks * inps.rngLooks)
# low pass filtering the dispersive phase
lowPassFilter(outDispersive, sigmaDispersive, maskFile,
inps.kernel_x_size, inps.kernel_y_size,
inps.kernel_sigma_x, inps.kernel_sigma_y,
iteration = inps.dispersive_filter_iterations,
theta = inps.kernel_rotation)
# low pass filtering the non-dispersive phase
lowPassFilter(outNonDispersive, sigmaNonDispersive, maskFile,
inps.kernel_x_size, inps.kernel_y_size,
inps.kernel_sigma_x, inps.kernel_sigma_y,
iteration = inps.dispersive_filter_iterations,
theta = inps.kernel_rotation)
# Estimating phase unwrapping errors
mFile , dFile = unwrapp_error_correction(f0, B, outDispersive+".filt", outNonDispersive+".filt",
inps.lowBandIgram, inps.highBandIgram, jumpsFile)
# re-estimate the dispersive and non-dispersive phase components by taking into account the unwrapping errors
outDispersive = outDispersive + ".unwCor"
outNonDispersive = outNonDispersive + ".unwCor"
dispersive_nonDispersive(inps.lowBandIgram, inps.highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpsFile, m=mFile , d=dFile)
# low pass filtering the new estimations
lowPassFilter(outDispersive, sigmaDispersive, maskFile,
inps.kernel_x_size, inps.kernel_y_size,
inps.kernel_sigma_x, inps.kernel_sigma_y,
iteration = inps.dispersive_filter_iterations,
theta = inps.kernel_rotation)
lowPassFilter(outNonDispersive, sigmaNonDispersive, maskFile,
inps.kernel_x_size, inps.kernel_y_size,
inps.kernel_sigma_x, inps.kernel_sigma_y,
iteration = inps.dispersive_filter_iterations,
theta = inps.kernel_rotation)
if __name__ == '__main__':
'''
Main driver.
'''
main()