359 lines
14 KiB
Python
Executable File
359 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
#
|
|
# Author: Cunren Liang
|
|
# Copyright 2021
|
|
#
|
|
|
|
import os
|
|
import glob
|
|
import shutil
|
|
import datetime
|
|
import numpy as np
|
|
|
|
import isce, isceobj
|
|
from isceobj.Alos2Proc.Alos2ProcPublic import create_xml
|
|
|
|
|
|
def datesFromPairs(pairs):
|
|
'''get all dates from pairs
|
|
'''
|
|
dates = []
|
|
for p in pairs:
|
|
for x in p.split('_'):
|
|
if x not in dates:
|
|
dates.append(x)
|
|
|
|
dates.sort()
|
|
|
|
return dates
|
|
|
|
|
|
def least_sqares(H, S, W=None):
|
|
'''
|
|
#This can make use multiple threads (set environment variable: OMP_NUM_THREADS)
|
|
linear equations: H theta = s
|
|
W: weight matrix
|
|
'''
|
|
|
|
S.reshape(H.shape[0], 1)
|
|
if W is None:
|
|
#use np.dot instead since some old python versions don't have matmul
|
|
m1 = np.linalg.inv(np.dot(H.transpose(), H))
|
|
Z = np.dot( np.dot(m1, H.transpose()) , S)
|
|
else:
|
|
#use np.dot instead since some old python versions don't have matmul
|
|
m1 = np.linalg.inv(np.dot(np.dot(H.transpose(), W), H))
|
|
Z = np.dot(np.dot(np.dot(m1, H.transpose()), W), S)
|
|
|
|
return Z.reshape(Z.size)
|
|
|
|
|
|
def interp_2d(data1, numberRangeLooks1, numberRangeLooks2, numberAzimuthLooks1, numberAzimuthLooks2, width2=None, length2=None):
|
|
'''
|
|
interpolate data1 of numberRangeLooks1/numberAzimuthLooks1 to data2 of numberRangeLooks2/numberAzimuthLooks2
|
|
'''
|
|
length1, width1 = data1.shape
|
|
|
|
if width2 is None:
|
|
width2 = int(np.around(width1*numberRangeLooks1/numberRangeLooks2))
|
|
if length2 is None:
|
|
length2 = int(np.around(length1*numberAzimuthLooks1/numberAzimuthLooks2))
|
|
|
|
|
|
#number of range looks input
|
|
nrli = numberRangeLooks1
|
|
#number of range looks output
|
|
nrlo = numberRangeLooks2
|
|
#number of azimuth looks input
|
|
nali = numberAzimuthLooks1
|
|
#number of azimuth looks output
|
|
nalo = numberAzimuthLooks2
|
|
|
|
index1 = np.linspace(0, width1-1, num=width1, endpoint=True)
|
|
index2 = np.linspace(0, width2-1, num=width2, endpoint=True) * nrlo/nrli + (nrlo-nrli)/(2.0*nrli)
|
|
data2 = np.zeros((length2, width2), dtype=data1.dtype)
|
|
for i in range(length1):
|
|
f = interp1d(index1, data1[i,:], kind='cubic', fill_value="extrapolate")
|
|
data2[i, :] = f(index2)
|
|
|
|
index1 = np.linspace(0, length1-1, num=length1, endpoint=True)
|
|
index2 = np.linspace(0, length2-1, num=length2, endpoint=True) * nalo/nali + (nalo-nali)/(2.0*nali)
|
|
for j in range(width2):
|
|
f = interp1d(index1, data2[0:length1, j], kind='cubic', fill_value="extrapolate")
|
|
data2[:, j] = f(index2)
|
|
|
|
return data2
|
|
|
|
|
|
def cmdLineParse():
|
|
'''
|
|
command line parser.
|
|
'''
|
|
import sys
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='least squares estimation')
|
|
parser.add_argument('--idir', dest='idir', type=str, required=True,
|
|
help = 'input directory where each pair (YYYYMMDD_YYYYMMDD) is located. only folders are recognized')
|
|
parser.add_argument('--odir', dest='odir', type=str, required=True,
|
|
help = 'output directory for estimated result of each date')
|
|
parser.add_argument('--zro_date', dest='zro_date', type=str, default=None,
|
|
help = 'date in least squares estimation whose ionospheric phase is assumed to be zero. format: YYYYMMDD. default: first date')
|
|
|
|
parser.add_argument('--exc_date', dest='exc_date', type=str, nargs='+', default=[],
|
|
help = 'pairs involving these dates are excluded in least squares estimation. a number of dates seperated by blanks. format: YYYYMMDD YYYYMMDD YYYYMMDD...')
|
|
parser.add_argument('--exc_pair', dest='exc_pair', type=str, nargs='+', default=[],
|
|
help = 'pairs excluded in least squares estimation. a number of pairs seperated by blanks. format: YYYYMMDD-YYYYMMDD YYYYMMDD-YYYYMMDD...')
|
|
parser.add_argument('--tsmax', dest='tsmax', type=float, default=None,
|
|
help = 'maximum time span in years of pairs used in least squares estimation. default: None')
|
|
|
|
parser.add_argument('--nrlks1', dest='nrlks1', type=int, default=1,
|
|
help = 'number of range looks of input. default: 1')
|
|
parser.add_argument('--nalks1', dest='nalks1', type=int, default=1,
|
|
help = 'number of azimuth looks of input. default: 1')
|
|
parser.add_argument('--nrlks2', dest='nrlks2', type=int, default=1,
|
|
help = 'number of range looks of output. default: 1')
|
|
parser.add_argument('--nalks2', dest='nalks2', type=int, default=1,
|
|
help = 'number of azimuth looks of output. default: 1')
|
|
parser.add_argument('--width2', dest='width2', type=int, default=None,
|
|
help = 'width of output result. default: None, determined by program')
|
|
parser.add_argument('--length2', dest='length2', type=int, default=None,
|
|
help = 'length of output result. default: None, determined by program')
|
|
parser.add_argument('--merged_geom', dest='merged_geom', type=str, default=None,
|
|
help = 'a merged geometry file for getting width2/length2, e.g. merged/geom_reference/hgt.rdr. if provided, --width2/--length2 will be overwritten')
|
|
|
|
parser.add_argument('--interp', dest='interp', action='store_true', default=False,
|
|
help='interpolate estimated result to nrlks2/nalks2 sample size')
|
|
parser.add_argument('--msk_overlap', dest='msk_overlap', action='store_true', default=False,
|
|
help='mask output with overlap of all acquisitions')
|
|
|
|
|
|
if len(sys.argv) <= 1:
|
|
print('')
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
inps = cmdLineParse()
|
|
|
|
|
|
#get user parameters from input
|
|
idir = inps.idir
|
|
odir = inps.odir
|
|
dateZero = inps.zro_date
|
|
dateExcluded = inps.exc_date
|
|
pairExcluded = inps.exc_pair
|
|
tsmax = inps.tsmax
|
|
numberRangeLooks1 = inps.nrlks1
|
|
numberAzimuthLooks1 = inps.nalks1
|
|
numberRangeLooks2 = inps.nrlks2
|
|
numberAzimuthLooks2 = inps.nalks2
|
|
width2 = inps.width2
|
|
length2 = inps.length2
|
|
mergedGeom = inps.merged_geom
|
|
interp = inps.interp
|
|
maskOverlap = inps.msk_overlap
|
|
#######################################################
|
|
|
|
#all pair folders in order
|
|
pairDirs = sorted(glob.glob(os.path.join(os.path.abspath(idir), '*_*')))
|
|
pairDirs = [x for x in pairDirs if os.path.isdir(x)]
|
|
|
|
#all pairs in order
|
|
pairsAll = [os.path.basename(x) for x in pairDirs]
|
|
#all dates in order
|
|
datesAll = datesFromPairs(pairsAll)
|
|
|
|
#select pairs
|
|
pairs = []
|
|
for x in pairsAll:
|
|
dateReference, dateSecondary = x.split('_')
|
|
timeReference = datetime.datetime.strptime(dateReference, "%Y%m%d")
|
|
timeSecondary = datetime.datetime.strptime(dateSecondary, "%Y%m%d")
|
|
ts = np.absolute((timeSecondary - timeReference).total_seconds()) / (365.0 * 24.0 * 3600)
|
|
if (dateReference in dateExcluded) and (dateSecondary in dateExcluded):
|
|
continue
|
|
if (x in pairExcluded):
|
|
continue
|
|
if tsmax is not None:
|
|
if ts > tsmax:
|
|
continue
|
|
pairs.append(x)
|
|
|
|
dates = datesFromPairs(pairs)
|
|
if dateZero is not None:
|
|
if dateZero not in dates:
|
|
raise Exception('zro_date provided by user not in the dates involved in least squares estimation.')
|
|
else:
|
|
dateZero = dates[0]
|
|
|
|
print(f'all pairs ({len(pairsAll)}):\n{pairsAll}')
|
|
print(f'all dates ({len(datesAll)}):\n{datesAll}')
|
|
print(f'used pairs ({len(pairs)}):\n{pairs}')
|
|
print(f'used dates ({len(dates)}):\n{dates}')
|
|
|
|
|
|
####################################################################################
|
|
print('\nSTEP 1. read files')
|
|
####################################################################################
|
|
|
|
ndate = len(dates)
|
|
npair = len(pairs)
|
|
|
|
ionfile = os.path.join(idir, pairs[0], 'ion_cal', 'filt.ion')
|
|
|
|
img = isceobj.createImage()
|
|
img.load(ionfile+'.xml')
|
|
width = img.width
|
|
length = img.length
|
|
|
|
ionPairs = np.zeros((npair, length, width), dtype=np.float32)
|
|
flag = np.ones((length, width), dtype=np.float32)
|
|
|
|
#this is reserved for use
|
|
wls = False
|
|
stdPairs = np.ones((npair, length, width), dtype=np.float32)
|
|
for i in range(npair):
|
|
ionfile = os.path.join(idir, pairs[i], 'ion_cal', 'filt.ion')
|
|
ionPairs[i, :, :] = (np.fromfile(ionfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :]
|
|
#flag of valid/invalid is defined by amplitde image
|
|
amp = (np.fromfile(ionfile, dtype=np.float32).reshape(length*2, width))[0:length*2:2, :]
|
|
flag *= (amp!=0)
|
|
|
|
|
|
####################################################################################
|
|
print('\nSTEP 2. do least squares')
|
|
####################################################################################
|
|
import copy
|
|
from numpy.linalg import matrix_rank
|
|
dates2 = copy.deepcopy(dates)
|
|
dates2.remove(dateZero)
|
|
|
|
#observation matrix
|
|
H0 = np.zeros((npair, ndate-1))
|
|
for k in range(npair):
|
|
dateReference = pairs[k].split('_')[0]
|
|
dateSecondary = pairs[k].split('_')[1]
|
|
if dateReference != dateZero:
|
|
dateReference_i = dates2.index(dateReference)
|
|
H0[k, dateReference_i] = 1
|
|
if dateSecondary != dateZero:
|
|
dateSecondary_i = dates2.index(dateSecondary)
|
|
H0[k, dateSecondary_i] = -1
|
|
rank = matrix_rank(H0)
|
|
if rank < ndate-1:
|
|
raise Exception('dates to be estimated are not fully connected by the pairs used in least squares')
|
|
else:
|
|
print('number of pairs to be used in least squares: {}'.format(npair))
|
|
print('number of dates to be estimated: {}'.format(ndate-1))
|
|
print('observation matrix rank: {}'.format(rank))
|
|
|
|
ts = np.zeros((ndate-1, length, width), dtype=np.float32)
|
|
for i in range(length):
|
|
if (i+1) % 50 == 0 or (i+1) == length:
|
|
print('processing line: %6d of %6d' % (i+1, length), end='\r')
|
|
if (i+1) == length:
|
|
print()
|
|
for j in range(width):
|
|
|
|
#observed signal
|
|
S0 = ionPairs[:, i, j]
|
|
|
|
if wls == False:
|
|
#observed signal
|
|
S = S0
|
|
H = H0
|
|
else:
|
|
#add weight
|
|
#https://stackoverflow.com/questions/19624997/understanding-scipys-least-square-function-with-irls
|
|
#https://stackoverflow.com/questions/27128688/how-to-use-least-squares-with-weight-matrix-in-python
|
|
wgt = (stdPairs[:, i, j])**2
|
|
W = np.sqrt(1.0/wgt)
|
|
H = H0 * W[:, None]
|
|
S = S0 * W
|
|
|
|
#do least-squares estimation
|
|
#[theta, residuals, rank, singular] = np.linalg.lstsq(H, S)
|
|
#make W full matrix if use W here (which is a slower method)
|
|
#'using W before this' is faster
|
|
theta = least_sqares(H, S, W=None)
|
|
ts[:, i, j] = theta
|
|
|
|
# #dump raw estimate
|
|
# cdir = os.getcwd()
|
|
# os.makedirs(odir, exist_ok=True)
|
|
# os.chdir(odir)
|
|
|
|
# for i in range(ndate-1):
|
|
# file_name = 'filt_ion_'+dates2[i]+ml2+'.ion'
|
|
# ts[i, :, :].astype(np.float32).tofile(file_name)
|
|
# create_xml(file_name, width, length, 'float')
|
|
# file_name = 'filt_ion_'+dateZero+ml2+'.ion'
|
|
# (np.zeros((length, width), dtype=np.float32)).astype(np.float32).tofile(file_name)
|
|
# create_xml(file_name, width, length, 'float')
|
|
|
|
# os.chdir(cdir)
|
|
|
|
|
|
####################################################################################
|
|
print('\nSTEP 3. interpolate ionospheric phase')
|
|
####################################################################################
|
|
from scipy.interpolate import interp1d
|
|
|
|
width1 = width
|
|
length1 = length
|
|
|
|
if width2 is None:
|
|
width2 = int(width1 * numberRangeLooks1 / numberRangeLooks2)
|
|
if length2 is None:
|
|
length2 = int(length1 * numberAzimuthLooks1 / numberAzimuthLooks2)
|
|
if mergedGeom is not None:
|
|
from osgeo import gdal
|
|
ds = gdal.Open(mergedGeom + ".vrt", gdal.GA_ReadOnly)
|
|
width2 = ds.RasterXSize
|
|
length2 = ds.RasterYSize
|
|
|
|
os.makedirs(odir, exist_ok=True)
|
|
for idate in range(ndate-1):
|
|
print('interplate {}'.format(dates2[idate]))
|
|
|
|
ionrectfile = os.path.join(odir, dates2[idate]+'.ion')
|
|
if interp and ((numberRangeLooks1 != numberRangeLooks2) or (numberAzimuthLooks1 != numberAzimuthLooks2)):
|
|
ionrect = interp_2d(ts[idate, :, :], numberRangeLooks1, numberRangeLooks2, numberAzimuthLooks1, numberAzimuthLooks2,
|
|
width2=width2, length2=length2)
|
|
|
|
#mask with overlap of all acquistions
|
|
if maskOverlap:
|
|
if idate == 0:
|
|
flagrect = interp_2d(flag, numberRangeLooks1, numberRangeLooks2, numberAzimuthLooks1, numberAzimuthLooks2,
|
|
width2=width2, length2=length2)
|
|
ionrect *= (flagrect>0.5)
|
|
|
|
ionrect.astype(np.float32).tofile(ionrectfile)
|
|
create_xml(ionrectfile, width2, length2, 'float')
|
|
else:
|
|
ionrect = ts[idate, :, :]
|
|
|
|
if maskOverlap:
|
|
ionrect *= flag
|
|
|
|
ionrect.astype(np.float32).tofile(ionrectfile)
|
|
create_xml(ionrectfile, width1, length1, 'float')
|
|
|
|
ionrectfile = os.path.join(odir, dateZero+'.ion')
|
|
if interp and ((numberRangeLooks1 != numberRangeLooks2) or (numberAzimuthLooks1 != numberAzimuthLooks2)):
|
|
(np.zeros((length2, width2), dtype=np.float32)).astype(np.float32).tofile(ionrectfile)
|
|
create_xml(ionrectfile, width2, length2, 'float')
|
|
else:
|
|
(np.zeros((length1, width1), dtype=np.float32)).astype(np.float32).tofile(ionrectfile)
|
|
create_xml(ionrectfile, width1, length1, 'float')
|
|
|
|
|
|
|
|
|