351 lines
13 KiB
Python
Executable File
351 lines
13 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# United States Government Sponsorship acknowledged. This software is subject to
|
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
|
# (No [Export] License Required except when exporting to an embargoed country,
|
|
# end user, or in support of a prohibited end use). By downloading this software,
|
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
|
# The user has the responsibility to obtain export licenses, or other export
|
|
# authority as may be required before exporting this software to any 'EAR99'
|
|
# embargoed foreign country or citizen of those countries.
|
|
#
|
|
# Author: Piyush Agram
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
import datetime
|
|
import logging
|
|
try:
|
|
import h5py
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Python module h5py is required to process COSMO-SkyMed data"
|
|
)
|
|
|
|
import isceobj
|
|
from isceobj.Scene.Frame import Frame
|
|
from isceobj.Orbit.Orbit import StateVector
|
|
from isceobj.Planet.Planet import Planet
|
|
from isceobj.Planet.AstronomicalHandbook import Const
|
|
from isceobj.Sensor import cosar
|
|
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU
|
|
from isceobj.Sensor import tkfunc,createAuxFile
|
|
from iscesys.Component.Component import Component
|
|
|
|
HDF5 = Component.Parameter(
|
|
'hdf5',
|
|
public_name='HDF5',
|
|
default=None,
|
|
type=str,
|
|
mandatory=True,
|
|
intent='input',
|
|
doc='CSK slc hdf5 input file'
|
|
)
|
|
|
|
from .Sensor import Sensor
|
|
class COSMO_SkyMed_SLC(Sensor):
|
|
"""
|
|
A class representing a Level1Product meta data.
|
|
Level1Product(hdf5=h5filename) will parse the hdf5
|
|
file and produce an object with attributes for metadata.
|
|
"""
|
|
parameter_list = (HDF5,) + Sensor.parameter_list
|
|
logging_name = 'isce.Sensor.COSMO_SkyMed_SLC'
|
|
family = 'cosmo_skymed_slc'
|
|
|
|
def __init__(self,family='',name=''):
|
|
super(COSMO_SkyMed_SLC,self).__init__(family if family else self.__class__.family, name=name)
|
|
self.frame = Frame()
|
|
self.frame.configure()
|
|
# Some extra processing parameters unique to CSK SLC (currently)
|
|
self.dopplerRangeTime = []
|
|
self.dopplerAzimuthTime = []
|
|
self.azimuthRefTime = None
|
|
self.rangeRefTime = None
|
|
self.rangeFirstTime = None
|
|
self.rangeLastTime = None
|
|
|
|
|
|
self.lookMap = {'RIGHT': -1,
|
|
'LEFT': 1}
|
|
return
|
|
|
|
def __getstate__(self):
|
|
d = dict(self.__dict__)
|
|
del d['logger']
|
|
return d
|
|
|
|
def __setstate__(self,d):
|
|
self.__dict__.update(d)
|
|
self.logger = logging.getLogger('isce.Sensor.COSMO_SkyMed_SLC')
|
|
return
|
|
|
|
|
|
def getFrame(self):
|
|
return self.frame
|
|
|
|
def parse(self):
|
|
try:
|
|
fp = h5py.File(self.hdf5,'r')
|
|
except Exception as strerr:
|
|
self.logger.error("IOError: %s" % strerr)
|
|
return None
|
|
|
|
self.populateMetadata(fp)
|
|
fp.close()
|
|
|
|
def populateMetadata(self, file):
|
|
"""
|
|
Populate our Metadata objects
|
|
"""
|
|
|
|
self._populatePlatform(file)
|
|
self._populateInstrument(file)
|
|
self._populateFrame(file)
|
|
self._populateOrbit(file)
|
|
self._populateExtras(file)
|
|
|
|
|
|
def _populatePlatform(self, file):
|
|
platform = self.frame.getInstrument().getPlatform()
|
|
|
|
platform.setMission(file.attrs['Satellite ID'])
|
|
platform.setPointingDirection(self.lookMap[file.attrs['Look Side'].decode('utf-8')])
|
|
platform.setPlanet(Planet(pname="Earth"))
|
|
|
|
####This is an approximation for spotlight mode
|
|
####In spotlight mode, antenna length changes with azimuth position
|
|
platform.setAntennaLength(file.attrs['Antenna Length'])
|
|
try:
|
|
if file.attrs['Multi-Beam ID'].startswith('ES'):
|
|
platform.setAntennaLength(16000.0/file['S01/SBI'].attrs['Line Time Interval'])
|
|
except:
|
|
pass
|
|
|
|
def _populateInstrument(self, file):
|
|
instrument = self.frame.getInstrument()
|
|
|
|
# rangePixelSize = Const.c/(2*file['S01'].attrs['Sampling Rate'])
|
|
rangePixelSize = file['S01/SBI'].attrs['Column Spacing']
|
|
instrument.setRadarWavelength(file.attrs['Radar Wavelength'])
|
|
# instrument.setPulseRepetitionFrequency(file['S01'].attrs['PRF'])
|
|
instrument.setPulseRepetitionFrequency(1.0/file['S01/SBI'].attrs['Line Time Interval'])
|
|
instrument.setRangePixelSize(rangePixelSize)
|
|
instrument.setPulseLength(file['S01'].attrs['Range Chirp Length'])
|
|
instrument.setChirpSlope(file['S01'].attrs['Range Chirp Rate'])
|
|
# instrument.setRangeSamplingRate(file['S01'].attrs['Sampling Rate'])
|
|
instrument.setRangeSamplingRate(1.0/file['S01/SBI'].attrs['Column Time Interval'])
|
|
|
|
incangle = 0.5*(file['S01/SBI'].attrs['Far Incidence Angle'] +
|
|
file['S01/SBI'].attrs['Near Incidence Angle'])
|
|
instrument.setIncidenceAngle(incangle)
|
|
|
|
|
|
def _populateFrame(self, file):
|
|
|
|
rft = file['S01/SBI'].attrs['Zero Doppler Range First Time']
|
|
slantRange = rft*Const.c/2.0
|
|
self.frame.setStartingRange(slantRange)
|
|
|
|
referenceUTC = self._parseNanoSecondTimeStamp(file.attrs['Reference UTC'])
|
|
relStart = file['S01/SBI'].attrs['Zero Doppler Azimuth First Time']
|
|
relEnd = file['S01/SBI'].attrs['Zero Doppler Azimuth Last Time']
|
|
relMid = 0.5*(relStart + relEnd)
|
|
|
|
sensingStart = self._combineDateTime(referenceUTC, relStart)
|
|
sensingStop = self._combineDateTime(referenceUTC, relEnd)
|
|
sensingMid = self._combineDateTime(referenceUTC, relMid)
|
|
|
|
|
|
self.frame.setPassDirection(file.attrs['Orbit Direction'])
|
|
self.frame.setOrbitNumber(file.attrs['Orbit Number'])
|
|
self.frame.setProcessingFacility(file.attrs['Processing Centre'])
|
|
self.frame.setProcessingSoftwareVersion(file.attrs['L0 Software Version'])
|
|
self.frame.setPolarization(file['S01'].attrs['Polarisation'])
|
|
self.frame.setNumberOfLines(file['S01/SBI'].shape[0])
|
|
self.frame.setNumberOfSamples(file['S01/SBI'].shape[1])
|
|
self.frame.setSensingStart(sensingStart)
|
|
self.frame.setSensingMid(sensingMid)
|
|
self.frame.setSensingStop(sensingStop)
|
|
|
|
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
|
|
farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize
|
|
self.frame.setFarRange(farRange)
|
|
|
|
def _populateOrbit(self,file):
|
|
orbit = self.frame.getOrbit()
|
|
|
|
orbit.setReferenceFrame('ECR')
|
|
orbit.setOrbitSource('Header')
|
|
t0 = datetime.datetime.strptime(file.attrs['Reference UTC'].decode('utf-8'),'%Y-%m-%d %H:%M:%S.%f000')
|
|
t = file.attrs['State Vectors Times']
|
|
position = file.attrs['ECEF Satellite Position']
|
|
velocity = file.attrs['ECEF Satellite Velocity']
|
|
|
|
for i in range(len(position)):
|
|
vec = StateVector()
|
|
dt = t0 + datetime.timedelta(seconds=t[i])
|
|
vec.setTime(dt)
|
|
vec.setPosition([position[i,0],position[i,1],position[i,2]])
|
|
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
|
|
orbit.addStateVector(vec)
|
|
|
|
|
|
def _populateExtras(self, file):
|
|
"""
|
|
Populate some of the extra fields unique to processing TSX data.
|
|
In the future, other sensors may need this information as well,
|
|
and a re-organization may be necessary.
|
|
"""
|
|
from isceobj.Doppler.Doppler import Doppler
|
|
|
|
self.dopplerRangeTime = file.attrs['Centroid vs Range Time Polynomial']
|
|
self.dopplerAzimuthTime = file.attrs['Centroid vs Azimuth Time Polynomial']
|
|
self.rangeRefTime = file.attrs['Range Polynomial Reference Time']
|
|
self.azimuthRefTime = file.attrs['Azimuth Polynomial Reference Time']
|
|
self.rangeFirstTime = file['S01/SBI'].attrs['Zero Doppler Range First Time']
|
|
self.rangeLastTime = file['S01/SBI'].attrs['Zero Doppler Range Last Time']
|
|
|
|
# get Doppler rate information, vs. azimuth first EJF 2015/00/05
|
|
# guessing that same scale applies as for Doppler centroid
|
|
self.dopplerRateCoeffs = file.attrs['Doppler Rate vs Azimuth Time Polynomial']
|
|
|
|
def extractImage(self):
|
|
import os
|
|
from ctypes import cdll, c_char_p
|
|
extract_csk = cdll.LoadLibrary(os.path.dirname(__file__)+'/csk.so')
|
|
inFile_c = c_char_p(bytes(self.hdf5, 'utf-8'))
|
|
outFile_c = c_char_p(bytes(self.output, 'utf-8'))
|
|
|
|
extract_csk.extract_csk_slc(inFile_c, outFile_c)
|
|
|
|
self.parse()
|
|
slcImage = isceobj.createSlcImage()
|
|
slcImage.setFilename(self.output)
|
|
slcImage.setXmin(0)
|
|
slcImage.setXmax(self.frame.getNumberOfSamples())
|
|
slcImage.setWidth(self.frame.getNumberOfSamples())
|
|
slcImage.setAccessMode('r')
|
|
self.frame.setImage(slcImage)
|
|
|
|
|
|
def _parseNanoSecondTimeStamp(self,timestamp):
|
|
"""
|
|
Parse a date-time string with nanosecond precision and return a datetime object
|
|
"""
|
|
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
|
|
microsec = float(nanoSeconds)*1e-3
|
|
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
|
|
dt = dt + datetime.timedelta(microseconds=microsec)
|
|
return dt
|
|
|
|
def _combineDateTime(self,dobj, secsstr):
|
|
'''Takes the date from dobj and time from secs to spit out a date time object.
|
|
'''
|
|
sec = float(secsstr)
|
|
dt = datetime.timedelta(seconds = sec)
|
|
return datetime.datetime.combine(dobj.date(), datetime.time(0,0)) + dt
|
|
|
|
|
|
def extractDoppler(self):
|
|
"""
|
|
Return the doppler centroid as defined in the HDF5 file.
|
|
"""
|
|
import numpy as np
|
|
|
|
quadratic = {}
|
|
midtime = (self.rangeLastTime + self.rangeFirstTime)*0.5 - self.rangeRefTime
|
|
|
|
fd_mid = 0.0
|
|
x = 1.0
|
|
for ind, coeff in enumerate(self.dopplerRangeTime):
|
|
fd_mid += coeff*x
|
|
x *= midtime
|
|
|
|
|
|
####insarApp style
|
|
quadratic['a'] = fd_mid/self.frame.getInstrument().getPulseRepetitionFrequency()
|
|
quadratic['b'] = 0.
|
|
quadratic['c'] = 0.
|
|
|
|
|
|
####For roiApp more accurate
|
|
####Convert stuff to pixel wise coefficients
|
|
from isceobj.Util import Poly1D
|
|
|
|
coeffs = self.dopplerRangeTime
|
|
dr = self.frame.getInstrument().getRangePixelSize()
|
|
rref = 0.5 * Const.c * self.rangeRefTime
|
|
r0 = self.frame.getStartingRange()
|
|
norm = 0.5*Const.c/dr
|
|
|
|
dcoeffs = []
|
|
for ind, val in enumerate(coeffs):
|
|
dcoeffs.append( val / (norm**ind))
|
|
|
|
|
|
poly = Poly1D.Poly1D()
|
|
poly.initPoly(order=len(coeffs)-1)
|
|
poly.setMean( (rref - r0)/dr - 1.0)
|
|
poly.setCoeffs(dcoeffs)
|
|
|
|
|
|
pix = np.linspace(0, self.frame.getNumberOfSamples(), num=len(coeffs)+1)
|
|
evals = poly(pix)
|
|
fit = np.polyfit(pix,evals, len(coeffs)-1)
|
|
self.frame._dopplerVsPixel = list(fit[::-1])
|
|
print('Doppler Fit: ', fit[::-1])
|
|
|
|
#EMG - 20160420 This section was introduced in the populateMetadata method by EJF in r2022
|
|
#Its pupose seems to be to set self.doppler_coeff and self.azfmrate_coeff, which don't seem
|
|
#to be used anywhere in ISCE. Need to take time to understand the need for this and consult
|
|
#with EJF.
|
|
#
|
|
## save the Doppler centroid coefficients, converting units from .h5 file
|
|
## units in the file are quadratic coefficients in Hz, Hz/sec, and Hz/(sec^2)
|
|
## ISCE expects Hz, Hz/(range sample), Hz/(range sample)^2
|
|
## note that RS2 Doppler values are estimated at time dc.dopplerCentroidReferenceTime,
|
|
## so the values might need to be adjusted for ISCE usage
|
|
## adapted from RS2 version EJF 2015/09/05
|
|
# poly = self.frame._dopplerVsPixel
|
|
# rangeSamplingRate = self.frame.getInstrument().getPulseRepetitionFrequency()
|
|
# # need to convert units
|
|
# poly[1] = poly[1]/rangeSamplingRate
|
|
# poly[2] = poly[2]/rangeSamplingRate**2
|
|
# self.doppler_coeff = poly
|
|
#
|
|
## similarly save Doppler azimuth fm rate values, converting units
|
|
## units in the file are quadratic coefficients in Hz, Hz/sec, and Hz/(sec^2)
|
|
## units are already converted below
|
|
## Guessing that ISCE expects Hz, Hz/(azimuth line), Hz/(azimuth line)^2
|
|
## note that RS2 Doppler values are estimated at time dc.dopplerRateReferenceTime,
|
|
## so the values might need to be adjusted for ISCE usage
|
|
## modified from RS2 version EJF 2015/09/05
|
|
## CSK Doppler azimuth FM rate not yet implemented in reading section, set to zero for now
|
|
#
|
|
# fmpoly = self.dopplerRateCoeffs
|
|
# # don't need to convert units
|
|
## fmpoly[1] = fmpoly[1]/rangeSamplingRate
|
|
## fmpoly[2] = fmpoly[2]/rangeSamplingRate**2
|
|
# self.azfmrate_coeff = fmpoly
|
|
#EMG - 20160420
|
|
|
|
return quadratic
|