422 lines
17 KiB
Python
Executable File
422 lines
17 KiB
Python
Executable File
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# United States Government Sponsorship acknowledged. This software is subject to
|
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
|
# (No [Export] License Required except when exporting to an embargoed country,
|
|
# end user, or in support of a prohibited end use). By downloading this software,
|
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
|
# The user has the responsibility to obtain export licenses, or other export
|
|
# authority as may be required before exporting this software to any 'EAR99'
|
|
# embargoed foreign country or citizen of those countries.
|
|
#
|
|
# Author: Giangi Sacco
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
import math
|
|
import datetime
|
|
import logging
|
|
from iscesys.Component.Component import Component, Port
|
|
from isceobj.Util.mathModule import MathModule as MM
|
|
from isceobj.Orbit.Orbit import StateVector
|
|
|
|
# A class to hold three-dimensional basis vectors
|
|
class Basis(object):
|
|
|
|
def __init__(self):
|
|
self.x1 = []
|
|
self.x2 = []
|
|
self.x3 = []
|
|
|
|
# A class to hold three-dimensional basis vectors for spacecraft baselines
|
|
class BaselineBasis(Basis):
|
|
|
|
def __init__(self):
|
|
Basis.__init__(self)
|
|
|
|
def setPositionVector(self,x):
|
|
self.x1 = x
|
|
|
|
def getPositionVector(self):
|
|
return self.x1
|
|
|
|
def setVelocityVector(self,v):
|
|
self.x2 = v
|
|
|
|
def getVelocityVector(self):
|
|
return self.x2
|
|
|
|
def setCrossTrackVector(self,c):
|
|
self.x3 = c
|
|
|
|
def getCrossTrackVector(self):
|
|
return self.x3
|
|
|
|
|
|
BASELINE_LOCATION = Component.Parameter('baselineLocation',
|
|
public_name = 'BASELINE_LOCATION',
|
|
default = 'all',
|
|
type=str,
|
|
mandatory=False,
|
|
doc = ('Location at which to compute baselines - "all" implies '+
|
|
'top, middle, bottom of reference image, '+
|
|
'"top" implies near start of reference image, '+
|
|
'"bottom" implies at bottom of reference image, '+
|
|
'"middle" implies near middle of reference image. '+
|
|
'To be used in case there is a large shift between images.')
|
|
)
|
|
|
|
|
|
|
|
class Baseline(Component):
|
|
|
|
family = 'baseline'
|
|
logging_name = 'isce.mroipac.baseline'
|
|
|
|
parameter_list = (BASELINE_LOCATION,)
|
|
|
|
# Calculate the Look Angle of the reference frame
|
|
def calculateLookAngle(self):
|
|
lookVector = self.calculateLookVector()
|
|
return math.degrees(math.atan2(lookVector[1],lookVector[0]))
|
|
|
|
# Calculate the look vector of the reference frame
|
|
def calculateLookVector(self):
|
|
try:
|
|
z = self.referenceFrame.terrainHeight
|
|
except:
|
|
z = 0.0
|
|
cosl = ((self.height-z)*(2*self.radius + self.height + z) +
|
|
self.startingRange1*self.startingRange1)/(
|
|
2*self.startingRange1*(self.radius + self.height)
|
|
)
|
|
# print('Height: ', self.height)
|
|
# print('Radius: ', self.radius)
|
|
# print('Range: ', self.startingRange1)
|
|
# print('COSL: ', cosl)
|
|
sinl = math.sqrt(1 - cosl*cosl)
|
|
return [cosl,sinl]
|
|
|
|
# Calculate the scalar spacecraft velocity
|
|
def calculateScalarVelocity(self,orbit,time):
|
|
sv = orbit.interpolateOrbit(time, method='hermite')
|
|
v = sv.getVelocity()
|
|
normV = MM.norm(v)
|
|
|
|
return normV
|
|
|
|
# Given an orbit and a time, calculate an orthogonal basis for cross-track and velocity directions
|
|
# based on the spacecraft position
|
|
def calculateBasis(self,orbit,time):
|
|
|
|
sv = orbit.interpolateOrbit(time, method='hermite')
|
|
x1 = sv.getPosition()
|
|
v = sv.getVelocity()
|
|
r = MM.normalizeVector(x1) # Turn the position vector into a unit vector
|
|
v = MM.normalizeVector(v) # Turn the velocity vector into a unit vector
|
|
c = MM.crossProduct(r,v) # Calculate the vector perpendicular to the platform position and velocity, this is the c, or cross-track vector
|
|
c = MM.normalizeVector(c)
|
|
v = MM.crossProduct(c,r) # Calculate a the "velocity" component that is perpendicular to the cross-track direction and position
|
|
|
|
basis = BaselineBasis()
|
|
basis.setPositionVector(r)
|
|
basis.setVelocityVector(v)
|
|
basis.setCrossTrackVector(c)
|
|
|
|
return basis
|
|
|
|
# Given two position vectors and a basis, calculate the offset between the two positions in this basis
|
|
def calculateBasisOffset(self,x1,x2,basis):
|
|
dx = [(x2[j] - x1[j]) for j in range(len(x1))] # Calculate the difference between the reference and secondary position vectors
|
|
z_offset = MM.dotProduct(dx,basis.getVelocityVector()) # Calculate the length of the projection of the difference in position and the "velocity" component
|
|
v_offset = MM.dotProduct(dx,basis.getPositionVector())
|
|
c_offset = MM.dotProduct(dx,basis.getCrossTrackVector())
|
|
|
|
return z_offset,v_offset,c_offset
|
|
|
|
# Calculate the baseline components between two frames
|
|
def baseline(self):
|
|
#TODO This could be further refactored into a method that calculates the baseline between
|
|
#TODO frames when given a reference time and a secondary time and a method that calls this method
|
|
#TODO multiple times to calculate the rate of baseline change over time.
|
|
for port in self.inputPorts:
|
|
port()
|
|
|
|
lookVector = self.calculateLookVector()
|
|
|
|
az_offset = []
|
|
vb = []
|
|
hb = []
|
|
csb = []
|
|
asb = []
|
|
s = [0.,0.,0.]
|
|
|
|
if self.baselineLocation.lower() == 'all':
|
|
print('Using entire span of image for estimating baselines')
|
|
referenceTime = [self.referenceFrame.getSensingStart(),self.referenceFrame.getSensingMid(),self.referenceFrame.getSensingStop()]
|
|
elif self.baselineLocation.lower() == 'middle':
|
|
print('Estimating baselines around center of reference image')
|
|
referenceTime = [self.referenceFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingMid(), self.referenceFrame.getSensingMid() + datetime.timedelta(seconds=1.0)]
|
|
|
|
elif self.baselineLocation.lower() == 'top':
|
|
print('Estimating baselines at top of reference image')
|
|
referenceTime = [self.referenceFrame.getSensingStart(), self.referenceFrame.getSensingStart() + datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingStart() + datetime.timedelta(seconds=2.0)]
|
|
elif self.baselineLocation.lower() == 'bottom':
|
|
print('Estimating baselines at bottom of reference image')
|
|
referenceTime = [self.referenceFrame.getSensingStop() - datetime.timedelta(seconds=2.0), self.referenceFrame.getSensingStop() - datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingStop()]
|
|
else:
|
|
raise Exception('Unknown baseline location: {0}'.format(self.baselineLocation))
|
|
|
|
|
|
secondaryTime = [self.secondaryFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.secondaryFrame.getSensingMid(), self.secondaryFrame.getSensingMid() + datetime.timedelta(seconds=1.0)]
|
|
|
|
# secondaryTime = [self.secondaryFrame.getSensingStart(),self.secondaryFrame.getSensingMid(),self.secondaryFrame.getSensingStop()]
|
|
|
|
for i in range(3):
|
|
# Calculate the Baseline at the start of the scene, mid-scene, and the end of the scene
|
|
# First, get the position and velocity at the start of the scene
|
|
self.logger.info("Sampling time %s" % i)
|
|
referenceBasis = self.calculateBasis(self.referenceOrbit,referenceTime[i])
|
|
normV = self.calculateScalarVelocity(self.referenceOrbit,referenceTime[i])
|
|
|
|
# Calculate the distance moved since the last baseline point
|
|
if (i > 0):
|
|
deltaT = self._timeDeltaToSeconds(referenceTime[i] - referenceTime[0])
|
|
s[i] = s[i-1] + deltaT*normV
|
|
|
|
referenceSV = self.referenceOrbit.interpolateOrbit(referenceTime[i], method='hermite')
|
|
|
|
secondarySV = self.secondaryOrbit.interpolateOrbit(secondaryTime[i], method='hermite')
|
|
x1 = referenceSV.getPosition()
|
|
x2 = secondarySV.getPosition()
|
|
(z_offset,v_offset,c_offset) = self.calculateBasisOffset(x1,x2,referenceBasis)
|
|
az_offset.append(z_offset) # Save the position offset
|
|
# Calculate a new start time
|
|
relativeSecondaryTime = secondaryTime[i] - datetime.timedelta(seconds=(z_offset/normV))
|
|
secondarySV = self.secondaryOrbit.interpolateOrbit(relativeSecondaryTime, method='hermite')
|
|
# Recalculate the offsets
|
|
x2 = secondarySV.getPosition()
|
|
(z_offset,v_offset,c_offset) = self.calculateBasisOffset(x1,x2,referenceBasis)
|
|
vb.append(v_offset)
|
|
hb.append(c_offset)
|
|
csb.append(-hb[i]*lookVector[0] + vb[i]*lookVector[1]) # Multiply the horizontal and vertical baseline components by the look angle vector
|
|
asb.append(-hb[i]*lookVector[1] - vb[i]*lookVector[0])
|
|
|
|
#Calculating baseline
|
|
crossTrackBaselinePolynomialCoefficients = self.polynomialFit(s,hb)
|
|
verticalBaselinePolynomialCoefficients = self.polynomialFit(s,vb)
|
|
h_rate = crossTrackBaselinePolynomialCoefficients[1]
|
|
# Calculate the gross azimuth and range offsets
|
|
azb_avg = (az_offset[0] + az_offset[-1])/2.0
|
|
asb_avg = (asb[0] + asb[-1])/2.0
|
|
az_offset = (-azb_avg - h_rate*self.startingRange1*lookVector[1])/(self.azimuthPixelSize)
|
|
r_offset = (self.startingRange1 - self.startingRange2 - asb_avg)/(self.rangePixelSize)
|
|
# Populate class attributes
|
|
self.hBaselineTop = crossTrackBaselinePolynomialCoefficients[0]
|
|
self.hBaselineRate = crossTrackBaselinePolynomialCoefficients[1]
|
|
self.hBaselineAcc = crossTrackBaselinePolynomialCoefficients[2]
|
|
self.vBaselineTop = verticalBaselinePolynomialCoefficients[0]
|
|
self.vBaselineRate = verticalBaselinePolynomialCoefficients[1]
|
|
self.vBaselineAcc = verticalBaselinePolynomialCoefficients[2]
|
|
self.pBaselineTop = csb[0]
|
|
self.pBaselineBottom = csb[-1]
|
|
self.orbSlcAzimuthOffset = az_offset
|
|
self.orbSlcRangeOffset = r_offset
|
|
self.rangeOffset = self.startingRange1 - self.startingRange2
|
|
|
|
|
|
# Calculate a quadratic fit to the baseline polynomial
|
|
def polynomialFit(self,xRef,yRef):
|
|
size = len(xRef)
|
|
if not (len(xRef) == len(yRef)):
|
|
print("Error. Expecting input vectors of same length.")
|
|
raise Exception
|
|
if not (size == 3):
|
|
print("Error. Expecting input vectors of length 3.")
|
|
raise Exception
|
|
Y = [0]*size
|
|
A = [0]*size
|
|
M = [[0 for i in range(size) ] for j in range(size)]
|
|
for j in range(size):
|
|
for i in range(size):
|
|
M[j][i] = math.pow(xRef[j],i)
|
|
Y[j] = yRef[j]
|
|
MInv = MM.invertMatrix(M)
|
|
for i in range(size):
|
|
for j in range(size):
|
|
A[i] += MInv[i][j]*Y[j]
|
|
|
|
return A
|
|
|
|
def setRangePixelSize(self,pixelSize):
|
|
self.rangePixelSize = pixelSize
|
|
return
|
|
|
|
def setAzimuthPixelSize(self,pixelSize):
|
|
self.azimuthPixelSize = pixelSize
|
|
return
|
|
|
|
def setHeight(self,var):
|
|
self.height = float(var)
|
|
return
|
|
|
|
def setRadius(self,radius):
|
|
self.radius = radius
|
|
return
|
|
|
|
def setReferenceStartingRange(self,range):
|
|
self.startingRange1 = range
|
|
return
|
|
|
|
def setSecondaryStartingRange(self,range):
|
|
self.startingRange2 = range
|
|
return
|
|
|
|
def getHBaselineTop(self):
|
|
return self.hBaselineTop
|
|
|
|
def getHBaselineRate(self):
|
|
return self.hBaselineRate
|
|
|
|
def getHBaselineAcc(self):
|
|
return self.hBaselineAcc
|
|
|
|
def getVBaselineTop(self):
|
|
return self.vBaselineTop
|
|
|
|
def getVBaselineRate(self):
|
|
return self.vBaselineRate
|
|
|
|
def getVBaselineAcc(self):
|
|
return self.vBaselineAcc
|
|
|
|
def getPBaselineTop(self):
|
|
return self.pBaselineTop
|
|
|
|
def getPBaselineBottom(self):
|
|
return self.pBaselineBottom
|
|
|
|
def getOrbSlcAzimuthOffset(self):
|
|
return self.orbSlcAzimuthOffset
|
|
|
|
def getOrbSlcRangeOffset(self):
|
|
return self.orbSlcRangeOffset
|
|
|
|
def getRangeOffset(self):
|
|
return self.rangeOffset
|
|
|
|
def getPhaseConst(self):
|
|
return self.phaseConst
|
|
|
|
def getLookAngle(self):
|
|
return self.lookAngle
|
|
|
|
def _timeDeltaToSeconds(self,td):
|
|
return (td.microseconds + (td.seconds + td.days * 24.0 * 3600) * 10**6) / 10**6
|
|
|
|
|
|
def addReferenceFrame(self):
|
|
frame = self._inputPorts.getPort(name='referenceFrame').getObject()
|
|
self.referenceFrame = frame
|
|
self.startingRange1 = frame.getStartingRange()
|
|
|
|
prf = frame.getInstrument().getPulseRepetitionFrequency()
|
|
self.rangePixelSize = frame.getInstrument().getRangePixelSize()
|
|
self.referenceOrbit = frame.getOrbit()
|
|
midSV = self.referenceOrbit.interpolateOrbit(frame.getSensingMid(), method='hermite')
|
|
|
|
self.azimuthPixelSize = midSV.getScalarVelocity()/prf
|
|
try:
|
|
ellipsoid = frame._ellipsoid #UAVSAR frame creates ellipsoid with peg
|
|
self.radius = ellipsoid.pegRadCur
|
|
self.height = frame.platformHeight
|
|
except:
|
|
ellipsoid = frame.getInstrument().getPlatform().getPlanet().get_elp()
|
|
self.radius = ellipsoid.get_a()
|
|
self.height = midSV.calculateHeight(ellipsoid)
|
|
|
|
def addSecondaryFrame(self):
|
|
frame = self._inputPorts.getPort(name='secondaryFrame').getObject()
|
|
self.secondaryFrame = frame
|
|
self.startingRange2 = frame.getStartingRange()
|
|
self.secondaryOrbit = frame.getOrbit()
|
|
|
|
def __init__(self, name=''):
|
|
self.referenceOrbit = None
|
|
self.secondaryOrbit = None
|
|
self.referenceFrame = None
|
|
self.secondaryFrame = None
|
|
self.lookAngle = None
|
|
self.rangePixelSize = None
|
|
self.azimuthPixelSize = None
|
|
self.height = None
|
|
self.radius = None
|
|
self.startingRange1 = None
|
|
self.startingRange2 = None
|
|
self.hBaselineTop = None
|
|
self.hBaselineRate = None
|
|
self.hBaselineAcc = None
|
|
self.vBaselineTop = None
|
|
self.vBaselineRate = None
|
|
self.vBaselineAcc = None
|
|
self.pBaselineTop = None
|
|
self.pBaselineBottom = None
|
|
self.orbSlcAzimuthOffset = None
|
|
self.orbSlcRangeOffset = None
|
|
self.rangeOffset = None
|
|
self.phaseConst = -99999
|
|
super(Baseline, self).__init__(family=self.__class__.family, name=name)
|
|
self.logger = logging.getLogger('isce.mroipac.baseline')
|
|
self.createPorts()
|
|
|
|
# Satisfy the old Component
|
|
self.dictionaryOfOutputVariables = {}
|
|
self.dictionaryOfVariables = {}
|
|
self.descriptionOfVariables = {}
|
|
self.mandatoryVariables = []
|
|
self.optionalVariables = []
|
|
return None
|
|
|
|
def createPorts(self):
|
|
|
|
# Set input ports
|
|
# It looks like we really need two orbits, a time, range and azimuth pixel sizes
|
|
# the two starting ranges, a planet, and the two prfs
|
|
# These provide the orbits
|
|
# These provide the range and azimuth pixel sizes, starting ranges,
|
|
# satellite heights and times for the first lines
|
|
referenceFramePort = Port(name='referenceFrame',method=self.addReferenceFrame)
|
|
secondaryFramePort = Port(name='secondaryFrame',method=self.addSecondaryFrame)
|
|
self._inputPorts.add(referenceFramePort)
|
|
self._inputPorts.add(secondaryFramePort)
|
|
return None
|
|
|
|
|
|
def __str__(self):
|
|
retstr = "Initial Baseline estimates \n"
|
|
retstr += "Cross-track Baseline: %s\n"
|
|
retlst = (self.hBaselineTop,)
|
|
retstr += "Vertical Baseline: %s\n"
|
|
retlst += (self.vBaselineTop,)
|
|
retstr += "Perpendicular Baseline: %s\n"
|
|
retlst += (self.pBaselineTop,)
|
|
retstr += "Bulk Azimuth Offset: %s\n"
|
|
retlst += (self.orbSlcAzimuthOffset,)
|
|
retstr += "Bulk Range Offset: %s\n"
|
|
retlst += (self.orbSlcRangeOffset,)
|
|
return retstr % retlst
|