ISCE_INSAR/contrib/stack/topsStack/grossOffsets.py

380 lines
13 KiB
Python
Executable File

#!/usr/bin/env python3
# Generate grossOffsets (pixel) based on velocity field
# Author: Minyan Zhong
import numpy as np
import pyproj
import subprocess
import isce
import isceobj
from iscesys.Component.ProductManager import ProductManager as PM
import numpy as np
from netCDF4 import Dataset
#from mpl_toolkits.basemap import Basemap
from osgeo import gdal
from scipy.interpolate import interp2d, griddata
import matplotlib.pyplot as plt
class grossOffsets:
def __init__(self):
self.nfig = 1
self.figsize = (10,10)
## Antarctica Velocity File
self.vel_file = '/net/jokull/nobak/mzzhong/Ant_Plot/Data/antarctica_ice_velocity_900m.nc'
self.vProj = pyproj.Proj('+init=EPSG:3031')
def setMode(self,mode):
if mode == 'interior' or mode == 'exterior':
self.mode = mode
else:
raise Exception('Wrong gross offset mode')
def setLatFile(self,val):
self.latfile = val
def setLonFile(self,val):
self.lonfile = val
def setLosFile(self,val):
self.losfile = val
def setXSize(self,val):
self.XSize = val
def setYize(self,val):
self.YSize = val
def setMargin(self,val):
self.margin = val
def setWinSizeHgt(self,val):
self.winSizeHgt = val
def setWinSizeWidth(self,val):
self.winSizeWidth = val
def setSearchSizeHgt(self,val):
self.searchSizeHgt = val
def setSearchSizeWidth(self,val):
self.searchSizeWidth = val
def setSkipSizeHgt(self,val):
self.skipSizeHgt = val
def setSkipSizeWidth(self,val):
self.skipSizeWidth = val
# exterior mode
def setOffsetLat(self,lat):
self.lat = lat
def setOffsetLon(self,lon):
self.lon = lon
def setOffsetInc(self,inc):
self.inc = inc
def setOffsetAzi(self,azi):
self.azi = azi
def setNumWinDown(self,numWinDown):
self.numWinDown = numWinDown
def setNumWinAcross(self,numWinAcross):
self.numWinAcross = numWinAcross
def setbTemp(self,val):
self.bTemp = val
def setPixelSize(self,azPixelSize,rngPixelSize):
self.azPixelSize = azPixelSize
self.rngPixelSize = rngPixelSize
def get_veloData(self):
print("getting velocity data...")
fh=Dataset(self.vel_file,mode='r')
self.vx = fh.variables['vx'][:]
self.vy = fh.variables['vy'][:]
self.vx = np.flipud(self.vx)
self.vy = np.flipud(self.vy)
self.v = np.sqrt(np.multiply(self.vx,self.vx)+np.multiply(self.vy,self.vy))
print(self.v.shape)
self.x0 = np.arange(-2800000,2800000,step=900)
self.y0 = np.arange(-2800000,2800000,step=900)+200
#x,y = np.meshgrid(self.x0,self.y0)
#from mpl_toolkits.basemap import Basemap
#self.AntVeloDataMap = Basemap(width=5600000,height=5600000,\
# resolution='l',projection='stere',\
# lat_ts=-71,lat_0=-90,lon_0=0)
#self.vel_lon, self.vel_lat= self.vProj(x,y,inverse="true")
def runGrossOffsets(self):
###Pieces of information needed
###These pieces of information come from the output of "topo" module from ISCE
### llh - size(3) - lat,lon,hgt of pixel under consideration
### los - size(2) - inc, azi LOS angles
###These pieces of information come from an external velocity product, e.g from NSIDC
### vx - scalar - Velocity in x direction at pixel under consideration
### vy - scalar - Velocity in y direction at pixel under consideration
### vproj - string - Projection system of the velocity field
### - EPSG:3031 for Antarctica
### - EPSG:3413 for Greenland
#### The equations below describe the operations needed for a single pixel
#### I will use Greenland as an example. Easy to change for Antarctica by changing the coordinate system.
### Step 0: Set up projection transformers for ease of use
self.llhProj = pyproj.Proj('+init=EPSG:4326') ##Standard lat,lon, hgt
self.xyzProj = pyproj.Proj('+init=EPSG:4978') ##Standard xyz (ECEF)
refPt = self.vProj(0.0, 0.0, inverse=True)
print(refPt)
### Step 1: Set up radar image information
azPixelSize = self.azPixelSize
rngPixelSize = self.rngPixelSize
### Step 2: Cut the data
print('Obtain the velocity data...')
self.get_veloData()
print('Extract the data to this radar scene...')
if self.mode == 'interior':
numWinDown = (self.YSize - self.margin*2 - self.searchSizeHgt*2 - self.winSizeHgt) // self.skipSizeHgt
numWinAcross = (self.XSize - self.margin*2 - self.searchSizeWidth*2 - self.winSizeWidth) // self.skipSizeWidth
lat = np.zeros(shape=(numWinDown,numWinAcross))
lon = np.zeros(shape=(numWinDown,numWinAcross))
inc = np.zeros(shape=(numWinDown,numWinAcross))
azi = np.zeros(shape=(numWinDown,numWinAcross))
self.centerOffsetHgt = self.searchSizeHgt+self.skipSizeHgt//2-1
self.centerOffsetWidth = self.searchSizeWidth+self.skipSizeWidth//2-1
elif self.mode == 'exterior':
numWinDown = self.numWinDown
numWinAcross = self.numWinAcross
lat = self.lat
lon = self.lon
inc = self.inc
azi = self.azi
print(numWinDown)
print(numWinAcross)
cut_vx = np.zeros(shape=(numWinDown,numWinAcross))
cut_vy = np.zeros(shape=(numWinDown,numWinAcross))
cut_v = np.zeros(shape=(numWinDown,numWinAcross))
pixel = np.zeros(shape=(numWinDown,numWinAcross))
line = np.zeros(shape=(numWinDown,numWinAcross))
for iwin in range(numWinDown):
if self.mode == 'interior':
print('Processing line: ',iwin)
down = self.margin + self.skipSizeHgt * iwin + self.centerOffsetHgt
off = down*self.XSize
# Warning: depend on the ENVI format. This is for BSQ
off2 = self.YSize * self.XSize + down*self.XSize
start = self.margin + self.centerOffsetWidth
end = self.margin + self.skipSizeWidth * numWinAcross
latline = np.memmap(filename=self.latfile,dtype='float64',offset=8*off,shape=(self.XSize))
lonline = np.memmap(filename=self.lonfile,dtype='float64',offset=8*off,shape=(self.XSize))
incline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off,shape=(self.XSize))
aziline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize))
lat[iwin,:] = latline[start:end:self.skipSizeWidth]
lon[iwin,:] = lonline[start:end:self.skipSizeWidth]
inc[iwin,:] = incline[start:end:self.skipSizeWidth]
azi[iwin,:] = aziline[start:end:self.skipSizeWidth]
#print(iwin,': ',lon[iwin,:])
#print(iwin,': ',lat[iwin,:])
#print(iwin,': ',inc[iwin,:])
#print(iwin,': ',azi[iwin,:])
#### Look up in MEaSUREs InSAR-Based Antarctica Ice Velocity Map
xyMap = pyproj.transform(self.llhProj, self.vProj, lon[iwin,:], lat[iwin,:])
#xyMap = self.vProj(lon[iwin,:],lat[iwin,:])
pixel[iwin,:] = np.clip((xyMap[0]-self.x0[0])/900, 0, self.vx.shape[1]-1)
line[iwin,:] = np.clip((xyMap[1]-self.y0[0])/900, 0, self.vx.shape[0]-1)
pixel_int = pixel[iwin,:].astype(int)
line_int = line[iwin,:].astype(int)
# For Debug
#print(iwin,': ', 'location: ', xyMap[0],xyMap[1])
#print(iwin,': ', 'location: ', lon[iwin,:],lat[iwin,:])
cut_vx[iwin,:] = self.vx[line_int,pixel_int]
cut_vy[iwin,:] = self.vy[line_int,pixel_int]
cut_v[iwin,:] = np.sqrt(np.multiply(cut_vx[iwin,:],cut_vx[iwin,:]),np.multiply(cut_vy[iwin,:],cut_vy[iwin,:]))
## Interpolate offsetfield
# Mask out invalid value based on the value of lat (or lon) (only work for polar region)
# Mask out zero velocity
print('Interpolating velocity field...')
valid = np.logical_and(lat!=0,cut_v!=0)
x0=np.arange(numWinAcross)
y0=np.arange(numWinDown)
xx,yy=np.meshgrid(x0,y0)
grid_x,grid_y=[grid.ravel() for grid in np.meshgrid(x0,y0)]
points = np.column_stack((xx[valid],yy[valid]))
print(points.shape)
in_dat = cut_vx[valid]
cut_vx_new = griddata(points, in_dat, (grid_x, grid_y), method='linear')
in_dat = cut_vy[valid]
cut_vy_new = griddata(points, in_dat, (grid_x, grid_y), method='linear')
cut_vx_new = cut_vx_new.reshape(numWinDown,numWinAcross)
cut_vy_new = cut_vy_new.reshape(numWinDown,numWinAcross)
# mask out invalid values at margin
cut_vx_new[lat==0] = np.nan
cut_vy_new[lat==0] = np.nan
cut_v_new = np.sqrt(np.multiply(cut_vx_new,cut_vx_new),np.multiply(cut_vy_new,cut_vy_new))
print(cut_v_new)
print(cut_v_new.shape)
##########
#fig=plt.figure(10,figsize=(10,10))
#ax = fig.add_subplot(111)
#print(cut_v.shape)
#ax.imshow(np.clip(cut_v_new,0,1000),cmap=plt.cm.viridis)
#fig.savefig('10.png',format='png')
### Step 3: Convert XY velocity to EN velocity (clockwise rotation)
print('Coverting XY to EN...')
lonr = np.radians(lon - refPt[0])
cut_ve = np.multiply(cut_vx_new, np.cos(lonr)) - np.multiply(cut_vy_new, np.sin(lonr))
cut_vn = np.multiply(cut_vy_new, np.cos(lonr)) + np.multiply(cut_vx_new, np.sin(lonr))
print('Polar stereographic velocity: ', [cut_vx, cut_vy])
print('Local ENU velocity: ', [cut_ve, cut_vn])
####Step 4: Convert EN velocity to rng and azimuth
#Local los and azi vector in ENU coordinate
print(' Coverting EN to rdr...')
incr = np.radians(inc)
azir = np.radians(azi)
losr = np.radians(azi-90.0)
losenu=[ np.multiply(np.sin(incr),np.cos(losr)),
np.multiply(np.sin(incr),np.sin(losr)),
-np.cos(incr) ]
azienu=[ np.cos(azir),
np.sin(azir),
0.0 ]
grossRangeOffset = (self.bTemp/365.25) * (cut_ve * losenu[0] + cut_vn * losenu[1])/ rngPixelSize
grossAzimuthOffset = (self.bTemp/365.25) * (cut_ve * azienu[0] + cut_vn * azienu[1]) / azPixelSize
print('Gross azimuth offset: ', grossAzimuthOffset)
print('Gross range offset: ', grossRangeOffset)
# Float
fig=plt.figure(21,figsize=(16,9))
#ax = fig.add_subplot(121)
ax = fig.add_axes([0.05,0.05,0.4,0.9])
ax.set_title('gross azimuth offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(grossAzimuthOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#ax = fig.add_subplot(122)
ax = fig.add_axes([0.55,0.05,0.4,0.9])
ax.set_title('gross range offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(grossRangeOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossRangeOffset)),np.rint(np.nanmax(grossRangeOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
#fig.tight_layout()
fig.savefig('21.png',format='png')
## Round to integer
fig=plt.figure(22,figsize=(16,9))
#ax = fig.add_subplot(121)
ax = fig.add_axes([0.05,0.05,0.4,0.9])
ax.set_title('gross azimuth offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(np.rint(grossAzimuthOffset),cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#ax = fig.add_subplot(122)
ax = fig.add_axes([0.55,0.05,0.4,0.9])
ax.set_title('gross range offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(np.rint(grossRangeOffset),cmap=plt.cm.coolwarm)
print("Before plotting the gross offsets (min and max): ", np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset)))
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossRangeOffset)),np.rint(np.nanmax(grossRangeOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
#fig.tight_layout()
fig.savefig('22.png',format='png')
return grossAzimuthOffset, grossRangeOffset
def main():
grossObj = grossOffsets()
grossObj.runGrossOffsets()
if __name__=='__main__':
main()