module coordinates !!******************************************************** !* !* DESCRIPTION: ! This module contains functions to transform betwen llh, xyz, and sch !* !* FUNCTION LIST: radar_to_xyz, rdir, reast, rnorth, latlon !* convert_sch_to_xyz !* !!********************************************************* use linalg use fortranUtils implicit none ! declare data types type :: ellipsoid real*8 r_a ! semi-major axis real*8 r_e2 ! eccentricity-squared of earth ellipsoid end type ellipsoid type :: pegpoint real*8 r_lat ! peg latitude real*8 r_lon ! peg longitude real*8 r_hdg ! peg heading end type pegpoint type :: pegtrans real*8 r_mat(3,3) !transformation matrix SCH->XYZ real*8 r_matinv(3,3) !transformation matrix XYZ->SCH real*8 r_ov(3) !Offset vector SCH->XYZ real*8 r_radcur !peg radius of curvature end type pegtrans !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! SUBROUTINES & FUNCTIONS !!!!!!!!!!!!!!!!!!!!!!!!!!!!! contains subroutine radar_to_xyz(elp,peg,ptm,height) !c**************************************************************** !c** !c** FILE NAME: radar_to_xyz.f !c** !c** DATE WRITTEN:1/15/93 !c** !c** PROGRAMMER:Scott Hensley !c** !c** FUNCTIONAL DESCRIPTION: This routine computes the transformation !c** matrix and translation vector needed to get between radar (s,c,h) !c** coordinates and (x,y,z) WGS-84 coordinates. !c** !c** ROUTINES CALLED: latlon,rdir !c** !c** NOTES: none !c** !c** UPDATE LOG: !c** !c***************************************************************** ! input/output variables type(ellipsoid), intent(in) :: elp type(pegpoint), intent(in) :: peg type(pegtrans), intent(out) :: ptm real*8, intent(in), optional :: height ! local variables integer i,j,i_type real*8 r_radcur,r_llh(3),r_p(3),r_slt,r_clt,r_clo,r_slo,r_up(3) real*8 r_chg,r_shg real*8 r_height ! processing steps !Check if the height is given if (present(height)) then r_height = height else r_height = 0.0d0 endif ! first determine the rotation matrix r_clt = cos(peg%r_lat) r_slt = sin(peg%r_lat) r_clo = cos(peg%r_lon) r_slo = sin(peg%r_lon) r_chg = cos(peg%r_hdg) r_shg = sin(peg%r_hdg) ptm%r_mat(1,1) = r_clt*r_clo ptm%r_mat(1,2) = -r_shg*r_slo - r_slt*r_clo*r_chg ptm%r_mat(1,3) = r_slo*r_chg - r_slt*r_clo*r_shg ptm%r_mat(2,1) = r_clt*r_slo ptm%r_mat(2,2) = r_clo*r_shg - r_slt*r_slo*r_chg ptm%r_mat(2,3) = -r_clo*r_chg - r_slt*r_slo*r_shg ptm%r_mat(3,1) = r_slt ptm%r_mat(3,2) = r_clt*r_chg ptm%r_mat(3,3) = r_clt*r_shg do i=1,3 do j=1,3 ptm%r_matinv(i,j) = ptm%r_mat(j,i) enddo enddo ! find the translation vector ptm%r_radcur = rdir(elp%r_a,elp%r_e2,peg%r_hdg,peg%r_lat) + r_height i_type = 1 r_llh(1) = peg%r_lat r_llh(2) = peg%r_lon r_llh(3) = r_height call latlon(elp,r_p,r_llh,i_type) r_clt = cos(peg%r_lat) r_slt = sin(peg%r_lat) r_clo = cos(peg%r_lon) r_slo = sin(peg%r_lon) r_up(1) = r_clt*r_clo r_up(2) = r_clt*r_slo r_up(3) = r_slt do i=1,3 ptm%r_ov(i) = r_p(i) - ptm%r_radcur*r_up(i) enddo end subroutine radar_to_xyz !c**************************************************************** !c Various curvature functions !c**************************************************************** !c** !c** FILE NAME: curvature.f !c** !c** DATE WRITTEN: 12/02/93 !c** !c** PROGRAMMER:Scott Hensley !c** !c** FUNCTIONAL DESCRIPTION: This routine computes the curvature for !c** of various types required for ellipsoidal or spherical earth !c** calculations. !c** !c** ROUTINES CALLED: none !c** !c** NOTES: none !c** !c** UPDATE LOG: !c** !c***************************************************************** real*8 function rdir(r_a,r_e2,r_hdg,r_lat) real*8, intent(in) :: r_a,r_e2,r_lat,r_hdg real*8 :: r_re, r_rn r_re = reast(r_a,r_e2,r_lat) r_rn = rnorth(r_a,r_e2,r_lat) rdir = (r_re*r_rn)/(r_re*cos(r_hdg)**2 + r_rn*sin(r_hdg)**2) end function rdir real*8 function reast(r_a,r_e2,r_lat) real*8, intent(in) :: r_a,r_e2,r_lat reast = r_a/sqrt(1.d0 - r_e2*sin(r_lat)**2) end function reast real*8 function rnorth(r_a,r_e2,r_lat) real*8, intent(in) :: r_a,r_e2,r_lat rnorth = (r_a*(1.d0 - r_e2))/(1.d0 - r_e2*sin(r_lat)**2)**(1.5d0) end function rnorth subroutine latlon(elp,r_v,r_llh,i_type) !c**************************************************************** !c** !c** FILE NAME: latlon.f !c** !c** DATE WRITTEN:7/22/93 !c** !c** PROGRAMMER:Scott Hensley !c** !c** FUNCTIONAL DESCRIPTION:This program converts a vector to !c** lat,lon and height above the reference ellipsoid or given a !c** lat,lon and height produces a geocentric vector. !c** !c** ROUTINES CALLED:none !c** !c** NOTES: none !c** !c** UPDATE LOG: !c** !c**************************************************************** ! input/output variables integer, intent(in) :: i_type !1=lat,lon to vector,2= vector to lat,lon type(ellipsoid), intent(in) :: elp real*8, intent(inout), dimension(3) :: r_v !geocentric vector (meters) real*8, intent(inout), dimension(3) :: r_llh !latitude (deg -90 to 90), !longitude (deg -180 to 180),height ! local variables integer i_ft real*8 r_re,r_q2,r_q3,r_b,r_q real*8 r_p,r_tant,r_theta,r_a,r_e2 real*8 pi, r_dtor pi = getPi() r_dtor = pi/180.d0 ! processing steps r_a = elp%r_a r_e2 = elp%r_e2 if(i_type .eq. 1)then !convert lat,lon to vector r_re = r_a/sqrt(1.d0 - r_e2*sin(r_llh(1))**2) r_v(1) = (r_re + r_llh(3))*cos(r_llh(1))*cos(r_llh(2)) r_v(2) = (r_re + r_llh(3))*cos(r_llh(1))*sin(r_llh(2)) r_v(3) = (r_re*(1.d0-r_e2) + r_llh(3))*sin(r_llh(1)) elseif(i_type .eq. 2)then !convert vector to lat,lon r_q2 = 1.d0/(1.d0 - r_e2) r_q = sqrt(r_q2) r_q3 = r_q2 - 1.d0 r_b = r_a*sqrt(1.d0 - r_e2) r_llh(2) = atan2(r_v(2),r_v(1)) r_p = sqrt(r_v(1)**2 + r_v(2)**2) r_tant = (r_v(3)/r_p)*r_q r_theta = atan(r_tant) r_tant = (r_v(3) + r_q3*r_b*sin(r_theta)**3)/(r_p - r_e2*r_a*cos(r_theta)**3) r_llh(1) = atan(r_tant) r_re = r_a/sqrt(1.d0 - r_e2*sin(r_llh(1))**2) r_llh(3) = r_p/cos(r_llh(1)) - r_re endif end subroutine latlon subroutine convert_sch_to_xyz(ptm,r_schv,r_xyzv,i_type) !c**************************************************************** !c** !c** FILE NAME: convert_sch_to_xyz.for !c** !c** DATE WRITTEN:1/15/93 !c** !c** PROGRAMMER:Scott Hensley !c** !c** FUNCTIONAL DESCRIPTION: This routine applies the affine matrix !c** provided to convert the sch coordinates xyz WGS-84 coordintes or !c** the inverse transformation. !c** !c** ROUTINES CALLED: latlon,matvec,lincomb !c** !c** NOTES: none !c** !c** UPDATE LOG: !c** !c***************************************************************** ! input/output variables type(pegtrans), intent(in) :: ptm real*8, intent(inout) :: r_schv(3) !sch coordinates of a point real*8, intent(inout) :: r_xyzv(3) !WGS-84 coordinates of a point integer, intent(in) :: i_type !i_type = 0 sch => xyz ; !i_type = 1 xyz => sch ! local variables integer i_t real*8 r_schvt(3),r_llh(3) type(ellipsoid) :: sph ! processing steps ! compute the linear portion of the transformation sph%r_a = ptm%r_radcur sph%r_e2 = 0.0d0 if(i_type .eq. 0) then r_llh(1) = r_schv(2)/ptm%r_radcur r_llh(2) = r_schv(1)/ptm%r_radcur r_llh(3) = r_schv(3) i_t = 1 call latlon(sph,r_schvt,r_llh,i_t) call matvec(ptm%r_mat,r_schvt,r_xyzv) call lincomb(1.d0,r_xyzv,1.d0,ptm%r_ov,r_xyzv) elseif(i_type .eq. 1)then call lincomb(1.d0,r_xyzv,-1.d0,ptm%r_ov,r_schvt) call matvec(ptm%r_matinv,r_schvt,r_schv) i_t = 2 call latlon(sph,r_schv,r_llh,i_t) r_schv(1) = ptm%r_radcur*r_llh(2) r_schv(2) = ptm%r_radcur*r_llh(1) r_schv(3) = r_llh(3) end if end subroutine convert_sch_to_xyz end module coordinates