#!/usr/bin/env python3 # Author: Piyush Agram # Copyright 2016 #Heresh Fattahi, Adopted for stack import argparse import logging import datetime import isce import isceobj import mroipac import os import shelve import filecmp def createParser(): parser = argparse.ArgumentParser( description='Generate a baseline grid for interferograms') parser.add_argument('-m', '--reference', dest='reference', type=str, required=True, help='Directory with reference acquisition shelf file') parser.add_argument('-s', '--secondary', dest='secondary', type=str, required=True, help='Directory with secondary acquisition shelf file') parser.add_argument('-b', '--baseline_file', dest='baselineFile', type=str, required=True, help='An output text file which contains the computed baseline') return parser def cmdLineParse(iargs = None): parser = createParser() return parser.parse_args(args=iargs) def getMergedOrbit(product): from isceobj.Orbit.Orbit import Orbit ###Create merged orbit orb = Orbit() orb.configure() #Add first orbit to begin with for sv in product.orbit: orb.addStateVector(sv) return orb def main(iargs=None): '''Compute baseline. ''' inps=cmdLineParse(iargs) from isceobj.Planet.Planet import Planet from isceobj.Util.Poly2D import Poly2D import numpy as np import shelve baselineDir = os.path.dirname(inps.baselineFile) if baselineDir != '': os.makedirs(baselineDir, exist_ok=True) with shelve.open(os.path.join(inps.reference, 'data'), flag='r') as mdb: reference = mdb['frame'] with shelve.open(os.path.join(inps.secondary, 'data'), flag='r') as mdb: secondary = mdb['frame'] # check if the reference and secondary shelf are the same, i.e. it is baseline grid for the reference reference_SensingStart = reference.getSensingStart() secondary_SensingStart = secondary.getSensingStart() if reference_SensingStart==secondary_SensingStart: referenceBaseline = True else: referenceBaseline = False refElp = Planet(pname='Earth').ellipsoid dr = reference.instrument.rangePixelSize dt = 1./reference.PRF #reference.azimuthTimeInterval mStartingRange = reference.startingRange #min([x.startingRange for x in referenceswaths]) mFarRange = reference.startingRange + dr*(reference.numberOfSamples - 1) #max([x.farRange for x in referenceswaths]) mSensingStart = reference.sensingStart # min([x.sensingStart for x in referenceswaths]) mSensingStop = reference.sensingStop #max([x.sensingStop for x in referenceswaths]) mOrb = getMergedOrbit(reference) nPixels = int(np.round( (mFarRange - mStartingRange)/dr)) + 1 nLines = int(np.round( (mSensingStop - mSensingStart).total_seconds() / dt)) + 1 sOrb = getMergedOrbit(secondary) rangeLimits = mFarRange - mStartingRange # To make sure that we have at least 30 points nRange = int(np.max([30, int(np.ceil(rangeLimits/7000.))])) slantRange = mStartingRange + np.arange(nRange) * rangeLimits / (nRange - 1.0) azimuthLimits = (mSensingStop - mSensingStart).total_seconds() nAzimuth = int(np.max([30,int(np.ceil(azimuthLimits))])) azimuthTime = [mSensingStart + datetime.timedelta(seconds= x * azimuthLimits/(nAzimuth-1.0)) for x in range(nAzimuth)] doppler = Poly2D() doppler.initPoly(azimuthOrder=0, rangeOrder=0, coeffs=[[0.]]) Bperp = np.zeros((nAzimuth,nRange), dtype=np.float32) Bpar = np.zeros((nAzimuth,nRange), dtype=np.float32) fid = open(inps.baselineFile, 'wb') print('Baseline file {0} dims: {1}L x {2}P'.format(inps.baselineFile, nAzimuth, nRange)) if referenceBaseline: Bperp = np.zeros((nAzimuth,nRange), dtype=np.float32) Bperp.tofile(fid) else: for ii, taz in enumerate(azimuthTime): referenceSV = mOrb.interpolate(taz, method='hermite') mxyz = np.array(referenceSV.getPosition()) mvel = np.array(referenceSV.getVelocity()) for jj, rng in enumerate(slantRange): target = mOrb.rdr2geo(taz, rng) targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist()) slvTime, slvrng = sOrb.geo2rdr(target, doppler=doppler, wvl=0) secondarySV = sOrb.interpolateOrbit(slvTime, method='hermite') sxyz = np.array( secondarySV.getPosition()) aa = np.linalg.norm(sxyz-mxyz) costheta = (rng*rng + aa*aa - slvrng*slvrng)/(2.*rng*aa) Bpar[ii,jj] = aa*costheta perp = aa * np.sqrt(1 - costheta*costheta) direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel)) Bperp[ii,jj] = direction*perp Bperp.tofile(fid) fid.close() ####Write XML img = isceobj.createImage() img.setFilename( inps.baselineFile) img.bands = 1 img.scheme = 'BIP' img.dataType = 'FLOAT' img.setWidth(nRange) img.setAccessMode('READ') img.setLength(nAzimuth) img.renderHdr() img.renderVRT() ###Create oversampled VRT file cmd = 'gdal_translate -of VRT -ot Float32 -r bilinear -outsize {xsize} {ysize} {infile}.vrt {infile}.full.vrt'.format(xsize=nPixels, ysize=nLines, infile=inps.baselineFile) status = os.system(cmd) if status: raise Exception('cmd: {0} Failed'.format(cmd)) if __name__ == '__main__': ''' Main driver. ''' main()