subroutine latlon(elp,r_v,r_llh,i_type)BIND(C,NAME='latlon_C') !c**************************************************************** !c** !c** FILE NAME: latlon.f !c** !c** DATE WRITTEN:7/22/93 !c** !c** PROGRAMMER:Scott Hensley !c** !c** FUNCTIONAL DESCRIPTION:This program converts a vector to !c** lat,lon and height above the reference ellipsoid or given a !c** lat,lon and height produces a geocentric vector. !c** !c** ROUTINES CALLED:none !c** !c** NOTES: none !c** !c** UPDATE LOG: !c** !c**************************************************************** use, intrinsic :: iso_c_binding implicit none !c INPUT VARIABLES: integer(C_INT), value :: i_type !1=lat,lon to vector,2= vector to lat,lon type (ellipsoidType) elp real(C_DOUBLE), dimension(3) :: r_v !geocentric vector (meters) real(C_DOUBLE), dimension(3) :: r_llh !latitude (deg -90 to 90),longitude (deg -180 to 180),height !c LOCAL VARIABLES: real*8 r_re,r_q2,r_q3,r_b,r_q real*8 r_p,r_tant,r_theta,r_a,r_e2,r_e4 real*8 r_k,r_r,r_s,r_t,r_u,r_rv,r_w,r_d !c PROCESSING STEPS: r_a = elp%r_a r_e2 = elp%r_e2 if(i_type .eq. LLH_2_XYZ)then !convert lat,lon to vector r_re = r_a/sqrt(1.d0 - r_e2*sin(r_llh(1))**2) r_v(1) = (r_re + r_llh(3))*cos(r_llh(1))*cos(r_llh(2)) r_v(2) = (r_re + r_llh(3))*cos(r_llh(1))*sin(r_llh(2)) r_v(3) = (r_re*(1.d0-r_e2) + r_llh(3))*sin(r_llh(1)) elseif(i_type .eq. XYZ_2_LLH) then !convert vector to lat, lon !!!Translated from python code in !!!isceobj.Ellipsoid.xyz_to_llh r_q2 = (r_v(1)**2 + r_v(2)**2) !!xy2 r_q3 = r_a * r_a !!a2 r_e4 = r_e2 * r_e2 r_p = r_q2 / r_q3 r_q = (1.0d0 - r_e2)*(r_v(3)**2)/ r_q3 r_r = (r_p+r_q-r_e4)/6.0d0 r_s = (r_e4*r_p*r_q)/(4.0d0 * r_r**3) r_t = (1.0d0 + r_s + sqrt(r_s *(2.0d0+ r_s)))**(1.0d0/3.0d0) r_u = r_r * (1.0d0 + r_t + 1.0d0 / r_t) r_rv = sqrt(r_u**2 + r_e4*r_q) r_w = r_e2 * (r_u + r_rv - r_q)/(2.0d0 * r_rv) r_k = sqrt(r_u + r_rv + r_w**2) - r_w r_d = r_k * sqrt(r_q2) / (r_k + r_e2) r_llh(1) = atan2(r_v(3), r_d) r_llh(2) = atan2(r_v(2),r_v(1)) r_llh(3) = (r_k + r_e2 - 1.0d0) * sqrt(r_d**2 + r_v(3)**2)/r_k elseif(i_type .eq. XYZ_2_LLH_OLD)then !convert vector to lat,lon r_q2 = 1.d0/(1.d0 - r_e2) r_q = sqrt(r_q2) r_q3 = r_q2 - 1.d0 r_b = r_a*sqrt(1.d0 - r_e2) r_llh(2) = atan2(r_v(2),r_v(1)) r_p = sqrt(r_v(1)**2 + r_v(2)**2) r_tant = (r_v(3)/r_p)*r_q r_theta = atan(r_tant) r_tant = (r_v(3) + r_q3*r_b*sin(r_theta)**3)/ + (r_p - r_e2*r_a*cos(r_theta)**3) r_llh(1) = atan(r_tant) r_re = r_a/sqrt(1.d0 - r_e2*sin(r_llh(1))**2) r_llh(3) = r_p/cos(r_llh(1)) - r_re endif end subroutine latlon