//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Copyright 2009 California Institute of Technology. ALL RIGHTS RESERVED. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // United States Government Sponsorship acknowledged. This software is subject to // U.S. export control laws and regulations and has been classified as 'EAR99 NLR' // (No [Export] License Required except when exporting to an embargoed country, // end user, or in support of a prohibited end use). By downloading this software, // the user agrees to comply with all applicable U.S. export laws and regulations. // The user has the responsibility to obtain export licenses, or other export // authority as may be required before exporting this software to any 'EAR99' // embargoed foreign country or citizen of those countries. // // Author: Giangi Sacco //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #include #include #include "alosmodule.h" using namespace std; static const char * const __doc__ = "module for ALOS_pre_process"; PyModuleDef moduledef = { // header PyModuleDef_HEAD_INIT, // name of the module "alos", // module documentation string __doc__, // size of the per-interpreter state of the module; // -1 if this state is global -1, alos_methods, }; // initialization function for the module // *must* be called PyInit_alos PyMODINIT_FUNC PyInit_alos() { // create the module using moduledef struct defined above PyObject * module = PyModule_Create(&moduledef); // check whether module creation succeeded and raise an exception if not if (!module) { return module; } // otherwise, we have an initialized module // and return the newly created module return module; } PyObject *alos_C(PyObject* self,PyObject *args) { char *imageFile,*leaderFile,*outFile; int image_i; struct PRM inputPRM; struct PRM outputPRM; struct GLOBALS globals; if(!PyArg_ParseTuple(args,"sssi",&leaderFile,&imageFile,&outFile, &image_i)) { return NULL; } strcpy(inputPRM.led_file,leaderFile); // They call it the input_file, since it is used as input to the remaining // functions strcpy(inputPRM.input_file,outFile); inputPRM.near_range = -1; // Near Range inputPRM.RE = -1; // Local Earth Radius inputPRM.fd1 = 0.0; // Doppler centroid inputPRM.chirp_ext = 1000; // Chirp Extension inputPRM.nrows = 16384; // Number of rows to use inputPRM.num_patches = 1000; // Number of patches to use // There are other options that are globals and are not listed in the PRM // structure globals.imagefilename = imageFile; globals.quad_pol = 0; // Is this quad polarization data? globals.ALOS_format = 0; // Is this an ERSDAC product? globals.force_slope = 0; // Should we force a chirp slope? globals.forced_slope = 1.0; // If so, what is its value? globals.dopp = 0; // Are we calculating a doppler? globals.tbias = 0.0; // Is there a time bias to fix poor orbits? ALOS_pre_process(inputPRM,&outputPRM,globals,image_i); PyObject * dict = PyDict_New(); createDictionaryOutput(&outputPRM,dict); return Py_BuildValue("N", dict); } PyObject *alose_C(PyObject* self,PyObject *args) { char *imageFile,*leaderFile,*outFile; int image_i; struct PRM inputPRM; struct PRM outputPRM; struct GLOBALS globals; if(!PyArg_ParseTuple(args,"sssi",&leaderFile,&imageFile,&outFile, &image_i)) { return NULL; } strcpy(inputPRM.led_file,leaderFile); // They call it the input_file, since it is used as input to the remaining // functions strcpy(inputPRM.input_file,outFile); inputPRM.near_range = -1; // Near Range inputPRM.RE = -1; // Local Earth Radius inputPRM.fd1 = 0.0; // Doppler centroid inputPRM.chirp_ext = 1000; // Chirp Extension inputPRM.nrows = 16384; // Number of rows to use inputPRM.num_patches = 1000; // Number of patches to use // There are other options that are globals and are not listed in the PRM // structure globals.imagefilename = imageFile; globals.quad_pol = 0; // Is this quad polarization data? globals.ALOS_format = 1; // Is this an ERSDAC product? globals.force_slope = 0; // Should we force a chirp slope? globals.forced_slope = 1.0; // If so, what is its value? globals.dopp = 0; // Are we calculating a doppler? globals.tbias = 0.0; // Is there a time bias to fix poor orbits? ALOS_pre_process(inputPRM,&outputPRM,globals,image_i); PyObject * dict = PyDict_New(); createDictionaryOutput(&outputPRM,dict); return Py_BuildValue("N", dict); } PyObject * createDictionaryOutput(struct PRM * prm, PyObject * dict) { double vel; double fd,fdd,fddd; double dr,daz; int lookssquare; double cosinc, sininc, range; double sol = 299792458.; /* velocity in orbit */ vel=prm->vel/sqrt(prm->RE/(prm->RE+prm->ht)); /* Doppler in prfs */ fd=prm->fd1/prm->prf; fdd=prm->fdd1/prm->prf; fddd=prm->fddd1/prm->prf; /* looks for ~square pixels */ range=prm->near_range+sol/2./prm->fs*prm->num_rng_bins/2.; cosinc=(prm->RE*prm->RE + range*range-((prm->RE+prm->ht)*(prm->RE+prm->ht)))/2./prm->RE/range; sininc=sqrt(1-cosinc*cosinc); dr=sol/2./prm->fs/sininc; daz=vel/prm->prf*(prm->RE/(prm->RE+prm->ht)); lookssquare=dr/daz+0.5; if(lookssquare == 2)lookssquare=4; if(lookssquare == 3)lookssquare=4; Py_ssize_t len = 3; PyObject * dopCoef = PyList_New(len); PyObject * floatVal = PyFloat_FromDouble((double)fd); PyList_SetItem(dopCoef,0,floatVal);//steals the reference floatVal = PyFloat_FromDouble((double)fdd); PyList_SetItem(dopCoef,1,floatVal); floatVal = PyFloat_FromDouble((double)fdd); PyList_SetItem(dopCoef,2,floatVal); //does not steal -> iuse Py_xdecref PyDict_SetItemString(dict, "DOPPLER_CENTROID_COEFFICIENTS", dopCoef); Py_XDECREF(dopCoef); PyObject * intVal = PyLong_FromLong((long) prm->bytes_per_line); PyDict_SetItemString(dict,"NUMBER_BYTES_PER_LINE",intVal); Py_XDECREF(intVal); intVal = PyLong_FromLong((long) prm->good_bytes); PyDict_SetItemString(dict,"NUMBER_GOOD_BYTES",intVal); Py_XDECREF(intVal); intVal = PyLong_FromLong((long) prm->num_lines); PyDict_SetItemString(dict,"NUMBER_LINES",intVal); Py_XDECREF(intVal); intVal = PyLong_FromLong((long) prm->num_rng_bins); PyDict_SetItemString(dict,"NUMBER_RANGE_BIN",intVal); Py_XDECREF(intVal); intVal = PyLong_FromLong((long) lookssquare); PyDict_SetItemString(dict,"NUMBER_AZIMUTH_LOOKS",intVal); Py_XDECREF(intVal); intVal = PyLong_FromLong((long)prm->chirp_ext); PyDict_SetItemString(dict,"RANGE_CHIRP_EXTENSION_POINTS",intVal); Py_XDECREF(intVal); floatVal = PyFloat_FromDouble((double)prm->RE); PyDict_SetItemString(dict,"PLANET_LOCAL_RADIUS",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)vel); PyDict_SetItemString(dict,"BODY_FIXED_VELOCITY",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->ht); PyDict_SetItemString(dict,"SPACECRAFT_HEIGHT",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->near_range); PyDict_SetItemString(dict,"RANGE_FIRST_SAMPLE",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->prf); PyDict_SetItemString(dict,"PRF",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->xmi); PyDict_SetItemString(dict,"INPHASE_VALUE",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->xmq); PyDict_SetItemString(dict,"QUADRATURE_VALUE",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->az_res); PyDict_SetItemString(dict,"AZIMUTH_RESOLUTION",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->fs); PyDict_SetItemString(dict,"RANGE_SAMPLING_RATE",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->chirp_slope); PyDict_SetItemString(dict,"CHIRP_SLOPE",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->pulsedur); PyDict_SetItemString(dict,"RANGE_PULSE_DURATION",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->lambda); PyDict_SetItemString(dict,"RADAR_WAVELENGTH",floatVal); Py_XDECREF(floatVal); PyObject * strVal = PyUnicode_FromString(prm->iqflip); PyDict_SetItemString(dict,"IQ_FLIP",strVal); Py_XDECREF(strVal); floatVal = PyFloat_FromDouble((double)prm->SC_clock_start); PyDict_SetItemString(dict,"SC_CLOCK_START",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->SC_clock_stop); PyDict_SetItemString(dict,"SC_CLOCK_STOP",floatVal); Py_XDECREF(floatVal); floatVal = PyFloat_FromDouble((double)prm->near_range); PyDict_SetItemString(dict,"NEAR_RANGE",floatVal); Py_XDECREF(floatVal); intVal = PyLong_FromLong((long)prm->first_sample); PyDict_SetItemString(dict,"FIRST_SAMPLE",intVal); Py_XDECREF(intVal); return Py_BuildValue("i", 1); }