#!/usr/bin/env python3 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: Piyush Agram #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import datetime import logging try: import h5py except ImportError: raise ImportError( "Python module h5py is required to process ICEYE data" ) import isceobj from isceobj.Scene.Frame import Frame from isceobj.Orbit.Orbit import StateVector from isceobj.Planet.Planet import Planet from isceobj.Planet.AstronomicalHandbook import Const from isceobj.Sensor import cosar from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU from isceobj.Sensor import tkfunc,createAuxFile from iscesys.Component.Component import Component HDF5 = Component.Parameter( 'hdf5', public_name='HDF5', default=None, type=str, mandatory=True, intent='input', doc='ICEYE slc hdf5 input file' ) APPLY_SLANT_RANGE_PHASE = Component.Parameter( 'applySlantRangePhase', public_name='APPLY_SLANT_RANGE_PHASE', default=False, type=bool, mandatory=True, intent='input', doc='Recenter spectra by applying range spectra shift' ) from .Sensor import Sensor class ICEYE_SLC(Sensor): """ A class representing a Level1Product meta data. Level1Product(hdf5=h5filename) will parse the hdf5 file and produce an object with attributes for metadata. """ parameter_list = (HDF5, APPLY_SLANT_RANGE_PHASE) + Sensor.parameter_list logging_name = 'isce.Sensor.ICEYE_SLC' family = 'iceye_slc' def __init__(self,family='',name=''): super(ICEYE_SLC,self).__init__(family if family else self.__class__.family, name=name) self.frame = Frame() self.frame.configure() # Some extra processing parameters unique to CSK SLC (currently) self.dopplerRangeTime = [] self.dopplerAzimuthTime = [] self.azimuthRefTime = None self.rangeRefTime = None self.rangeFirstTime = None self.rangeLastTime = None self.lookMap = {'RIGHT': -1, 'LEFT': 1} return def __getstate__(self): d = dict(self.__dict__) del d['logger'] return d def __setstate__(self,d): self.__dict__.update(d) self.logger = logging.getLogger('isce.Sensor.ICEYE_SLC') return def getFrame(self): return self.frame def parse(self): try: fp = h5py.File(self.hdf5,'r') except Exception as strerr: self.logger.error("IOError: %s" % strerr) return None self.populateMetadata(fp) fp.close() def populateMetadata(self, file): """ Populate our Metadata objects """ self._populatePlatform(file) self._populateInstrument(file) self._populateFrame(file) self._populateOrbit(file) self._populateExtras(file) def _populatePlatform(self, file): platform = self.frame.getInstrument().getPlatform() platform.setMission(file['satellite_name'][()]) platform.setPointingDirection(self.lookMap[file['look_side'][()].upper()]) platform.setPlanet(Planet(pname="Earth")) ####This is an approximation for spotlight mode ####In spotlight mode, antenna length changes with azimuth position platform.setAntennaLength(2 * file['azimuth_ground_spacing'][()]) assert( file['range_looks'][()] == 1) assert( file['azimuth_looks'][()] == 1) def _populateInstrument(self, file): instrument = self.frame.getInstrument() rangePixelSize = file['slant_range_spacing'][()] instrument.setRadarWavelength(Const.c / file['carrier_frequency'][()]) instrument.setPulseRepetitionFrequency(file['processing_prf'][()]) instrument.setRangePixelSize(rangePixelSize) instrument.setPulseLength(file['chirp_duration'][()]) instrument.setChirpSlope(file['chirp_bandwidth'][()]/ file['chirp_duration'][()]) instrument.setRangeSamplingRate(file['range_sampling_rate'][()]) incangle = file['local_incidence_angle'] instrument.setIncidenceAngle(incangle[incangle.size//2]) def _populateFrame(self, file): rft = file['first_pixel_time'][()] slantRange = rft*Const.c/2.0 self.frame.setStartingRange(slantRange) sensingStart = datetime.datetime.strptime(file['zerodoppler_start_utc'][()].decode('utf-8'),'%Y-%m-%dT%H:%M:%S.%f') sensingStop = datetime.datetime.strptime(file['zerodoppler_end_utc'][()].decode('utf-8'),'%Y-%m-%dT%H:%M:%S.%f') sensingMid = sensingStart + 0.5 * (sensingStop - sensingStart) self.frame.setPassDirection(file['orbit_direction'][()]) self.frame.setOrbitNumber(file['orbit_absolute_number'][()]) self.frame.setProcessingFacility('ICEYE') self.frame.setProcessingSoftwareVersion(str(file['processor_version'][()])) self.frame.setPolarization(file['polarization'][()]) self.frame.setNumberOfLines(file['number_of_azimuth_samples'][()]) self.frame.setNumberOfSamples(file['number_of_range_samples'][()]) self.frame.setSensingStart(sensingStart) self.frame.setSensingMid(sensingMid) self.frame.setSensingStop(sensingStop) rangePixelSize = self.frame.getInstrument().getRangePixelSize() farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize self.frame.setFarRange(farRange) def _populateOrbit(self,file): import numpy as np orbit = self.frame.getOrbit() orbit.setReferenceFrame('ECR') orbit.setOrbitSource('Header') t = file['state_vector_time_utc'][:] position = np.zeros((t.size,3)) position[:,0] = file['posX'][:] position[:,1] = file['posY'][:] position[:,2] = file['posZ'][:] velocity = np.zeros((t.size,3)) velocity[:,0] = file['velX'][:] velocity[:,1] = file['velY'][:] velocity[:,2] = file['velZ'][:] for ii in range(t.size): vec = StateVector() vec.setTime(datetime.datetime.strptime(t[ii][0].decode('utf-8'), '%Y-%m-%dT%H:%M:%S.%f')) vec.setPosition([position[ii,0],position[ii,1],position[ii,2]]) vec.setVelocity([velocity[ii,0],velocity[ii,1],velocity[ii,2]]) orbit.addStateVector(vec) def _populateExtras(self, file): """ Populate some of the extra fields unique to processing TSX data. In the future, other sensors may need this information as well, and a re-organization may be necessary. """ import numpy as np self.dcpoly = np.mean(file['dc_estimate_coeffs'][:], axis=0) def extractImage(self): import numpy as np import h5py self.parse() fid = h5py.File(self.hdf5, 'r') si = fid['s_i'] sq = fid['s_q'] nLines = si.shape[0] spectralShift = 2 * self.frame.getInstrument().getRangePixelSize() / self.frame.getInstrument().getRadarWavelength() spectralShift -= np.floor(spectralShift) phsShift = np.exp(-1j * 2 * np.pi * spectralShift * np.arange(si.shape[1])) with open(self.output, 'wb') as fout: for ii in range(nLines): line = (si[ii,:] + 1j*sq[ii,:]) if self.applySlantRangePhase: line *= phsShift line.astype(np.complex64).tofile(fout) fid.close() slcImage = isceobj.createSlcImage() slcImage.setFilename(self.output) slcImage.setXmin(0) slcImage.setXmax(self.frame.getNumberOfSamples()) slcImage.setWidth(self.frame.getNumberOfSamples()) slcImage.setAccessMode('r') self.frame.setImage(slcImage) def extractDoppler(self): """ Return the doppler centroid as defined in the HDF5 file. """ import numpy as np quadratic = {} rangePixelSize = self.frame.getInstrument().getRangePixelSize() rt0 = self.frame.getStartingRange() / (2 * Const.c) rt1 = rt0 +((self.frame.getNumberOfSamples()-1)*rangePixelSize) / (2 * Const.c) ####insarApp style quadratic['a'] = np.polyval( self.dcpoly, 0.5 * (rt0 + rt1)) / self.frame.PRF quadratic['b'] = 0. quadratic['c'] = 0. ####For roiApp more accurate ####Convert stuff to pixel wise coefficients x = np.linspace(rt0, rt1, num=len(self.dcpoly)+1) pix = np.linspace(0, self.frame.getNumberOfSamples(), num=len(self.dcpoly)+1) evals = np.polyval(self.dcpoly, x) fit = np.polyfit(pix, evals, len(self.dcpoly)-1) self.frame._dopplerVsPixel = list(fit[::-1]) print('Doppler Fit: ', self.frame._dopplerVsPixel) return quadratic