# # Author: Cunren Liang # Copyright 2015-present, NASA-JPL/Caltech # import os import glob import logging import datetime import numpy as np import isceobj import isceobj.Sensor.MultiMode as MultiMode from isceobj.Planet.Planet import Planet from isceobj.Alos2Proc.Alos2ProcPublic import runCmd from isceobj.Alos2Proc.Alos2ProcPublic import getBboxRdr from isceobj.Alos2Proc.Alos2ProcPublic import getBboxGeo logger = logging.getLogger('isce.alos2insar.runBaseline') def runBaseline(self): '''compute baseline ''' catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() referenceTrack = self._insar.loadTrack(reference=True) secondaryTrack = self._insar.loadTrack(reference=False) ################################################## #2. compute burst synchronization ################################################## #burst synchronization may slowly change along a track as a result of the changing relative speed of the two flights #in one frame, real unsynchronized time is the same for all swaths unsynTime = 0 #real synchronized time/percentage depends on the swath burst length (synTime = burstlength - abs(unsynTime)) #synTime = 0 synPercentage = 0 numberOfFrames = len(self._insar.referenceFrames) numberOfSwaths = self._insar.endingSwath - self._insar.startingSwath + 1 for i, frameNumber in enumerate(self._insar.referenceFrames): for j, swathNumber in enumerate(range(self._insar.startingSwath, self._insar.endingSwath + 1)): referenceSwath = referenceTrack.frames[i].swaths[j] secondarySwath = secondaryTrack.frames[i].swaths[j] #using Piyush's code for computing range and azimuth offsets midRange = referenceSwath.startingRange + referenceSwath.rangePixelSize * referenceSwath.numberOfSamples * 0.5 midSensingStart = referenceSwath.sensingStart + datetime.timedelta(seconds = referenceSwath.numberOfLines * 0.5 / referenceSwath.prf) llh = referenceTrack.orbit.rdr2geo(midSensingStart, midRange) slvaz, slvrng = secondaryTrack.orbit.geo2rdr(llh) ###Translate to offsets #note that secondary range pixel size and prf might be different from reference, here we assume there is a virtual secondary with same #range pixel size and prf rgoff = ((slvrng - secondarySwath.startingRange) / referenceSwath.rangePixelSize) - referenceSwath.numberOfSamples * 0.5 azoff = ((slvaz - secondarySwath.sensingStart).total_seconds() * referenceSwath.prf) - referenceSwath.numberOfLines * 0.5 #compute burst synchronization #burst parameters for ScanSAR wide mode not estimed yet if self._insar.modeCombination == 21: scburstStartLine = (referenceSwath.burstStartTime - referenceSwath.sensingStart).total_seconds() * referenceSwath.prf + azoff #secondary burst start times corresponding to reference burst start times (100% synchronization) scburstStartLines = np.arange(scburstStartLine - 100000*referenceSwath.burstCycleLength, \ scburstStartLine + 100000*referenceSwath.burstCycleLength, \ referenceSwath.burstCycleLength) dscburstStartLines = -((secondarySwath.burstStartTime - secondarySwath.sensingStart).total_seconds() * secondarySwath.prf - scburstStartLines) #find the difference with minimum absolute value unsynLines = dscburstStartLines[np.argmin(np.absolute(dscburstStartLines))] if np.absolute(unsynLines) >= secondarySwath.burstLength: synLines = 0 if unsynLines > 0: unsynLines = secondarySwath.burstLength else: unsynLines = -secondarySwath.burstLength else: synLines = secondarySwath.burstLength - np.absolute(unsynLines) unsynTime += unsynLines / referenceSwath.prf synPercentage += synLines / referenceSwath.burstLength * 100.0 catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(synLines / referenceSwath.burstLength * 100.0), 'runBaseline') ############################################################################################ #illustration of the sign of the number of unsynchronized lines (unsynLines) #The convention is the same as ampcor offset, that is, # secondaryLineNumber = referenceLineNumber + unsynLines # # |-----------------------| ------------ # | | ^ # | | | # | | | unsynLines < 0 # | | | # | | \ / # | | |-----------------------| # | | | | # | | | | # |-----------------------| | | # Reference Burst | | # | | # | | # | | # | | # |-----------------------| # Secondary Burst # # ############################################################################################ ##burst parameters for ScanSAR wide mode not estimed yet elif self._insar.modeCombination == 31: #scansar is reference scburstStartLine = (referenceSwath.burstStartTime - referenceSwath.sensingStart).total_seconds() * referenceSwath.prf + azoff #secondary burst start times corresponding to reference burst start times (100% synchronization) for k in range(-100000, 100000): saz_burstx = scburstStartLine + referenceSwath.burstCycleLength * k st_burstx = secondarySwath.sensingStart + datetime.timedelta(seconds=saz_burstx / referenceSwath.prf) if saz_burstx >= 0.0 and saz_burstx <= secondarySwath.numberOfLines -1: secondarySwath.burstStartTime = st_burstx secondarySwath.burstLength = referenceSwath.burstLength secondarySwath.burstCycleLength = referenceSwath.burstCycleLength secondarySwath.swathNumber = referenceSwath.swathNumber break #unsynLines = 0 #synLines = referenceSwath.burstLength #unsynTime += unsynLines / referenceSwath.prf #synPercentage += synLines / referenceSwath.burstLength * 100.0 catalog.addItem('burst synchronization of frame {} swath {}'.format(frameNumber, swathNumber), '%.1f%%'%(100.0), 'runBaseline') else: pass #overwrite original frame parameter file if self._insar.modeCombination == 31: frameDir = 'f{}_{}'.format(i+1, frameNumber) self._insar.saveProduct(secondaryTrack.frames[i], os.path.join(frameDir, self._insar.secondaryFrameParameter)) #getting average if self._insar.modeCombination == 21: unsynTime /= numberOfFrames*numberOfSwaths synPercentage /= numberOfFrames*numberOfSwaths elif self._insar.modeCombination == 31: unsynTime = 0. synPercentage = 100. else: pass #record results if (self._insar.modeCombination == 21) or (self._insar.modeCombination == 31): self._insar.burstUnsynchronizedTime = unsynTime self._insar.burstSynchronization = synPercentage catalog.addItem('burst synchronization averaged', '%.1f%%'%(synPercentage), 'runBaseline') ################################################## #3. compute baseline ################################################## #only compute baseline at four corners and center of the reference track bboxRdr = getBboxRdr(referenceTrack) rangeMin = bboxRdr[0] rangeMax = bboxRdr[1] azimuthTimeMin = bboxRdr[2] azimuthTimeMax = bboxRdr[3] azimuthTimeMid = azimuthTimeMin+datetime.timedelta(seconds=(azimuthTimeMax-azimuthTimeMin).total_seconds()/2.0) rangeMid = (rangeMin + rangeMax) / 2.0 points = [[azimuthTimeMin, rangeMin], [azimuthTimeMin, rangeMax], [azimuthTimeMax, rangeMin], [azimuthTimeMax, rangeMax], [azimuthTimeMid, rangeMid]] Bpar = [] Bperp = [] #modify Piyush's code for computing baslines refElp = Planet(pname='Earth').ellipsoid for x in points: referenceSV = referenceTrack.orbit.interpolate(x[0], method='hermite') target = referenceTrack.orbit.rdr2geo(x[0], x[1]) slvTime, slvrng = secondaryTrack.orbit.geo2rdr(target) secondarySV = secondaryTrack.orbit.interpolateOrbit(slvTime, method='hermite') targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist()) mxyz = np.array(referenceSV.getPosition()) mvel = np.array(referenceSV.getVelocity()) sxyz = np.array(secondarySV.getPosition()) #to fix abrupt change near zero in baseline grid. JUN-05-2020 mvelunit = mvel / np.linalg.norm(mvel) sxyz = sxyz - np.dot ( sxyz-mxyz, mvelunit) * mvelunit aa = np.linalg.norm(sxyz-mxyz) costheta = (x[1]*x[1] + aa*aa - slvrng*slvrng)/(2.*x[1]*aa) Bpar.append(aa*costheta) perp = aa * np.sqrt(1 - costheta*costheta) direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel)) Bperp.append(direction*perp) catalog.addItem('parallel baseline at upperleft of reference track', Bpar[0], 'runBaseline') catalog.addItem('parallel baseline at upperright of reference track', Bpar[1], 'runBaseline') catalog.addItem('parallel baseline at lowerleft of reference track', Bpar[2], 'runBaseline') catalog.addItem('parallel baseline at lowerright of reference track', Bpar[3], 'runBaseline') catalog.addItem('parallel baseline at center of reference track', Bpar[4], 'runBaseline') catalog.addItem('perpendicular baseline at upperleft of reference track', Bperp[0], 'runBaseline') catalog.addItem('perpendicular baseline at upperright of reference track', Bperp[1], 'runBaseline') catalog.addItem('perpendicular baseline at lowerleft of reference track', Bperp[2], 'runBaseline') catalog.addItem('perpendicular baseline at lowerright of reference track', Bperp[3], 'runBaseline') catalog.addItem('perpendicular baseline at center of reference track', Bperp[4], 'runBaseline') ################################################## #4. compute bounding box ################################################## referenceBbox = getBboxGeo(referenceTrack) secondaryBbox = getBboxGeo(secondaryTrack) catalog.addItem('reference bounding box', referenceBbox, 'runBaseline') catalog.addItem('secondary bounding box', secondaryBbox, 'runBaseline') catalog.printToLog(logger, "runBaseline") self._insar.procDoc.addAllFromCatalog(catalog)