# # Author: Heresh Fattahi, Cunren Liang # # import argparse import logging import os import isce import isceobj from isceobj.Constants import SPEED_OF_LIGHT import numpy as np import gdal import shelve from scipy import ndimage try: import cv2 except ImportError: print('OpenCV2 does not appear to be installed / is not importable.') print('OpenCV2 is needed for this step. You may experience failures ...') logger = logging.getLogger('isce.insar.runDispersive') def createParser(): ''' Command line parser. ''' parser = argparse.ArgumentParser( description='split the range spectrum of SLC') parser.add_argument('-L', '--low_band_igram_prefix', dest='lowBandIgramPrefix', type=str, required=True, help='prefix of unwrapped low band interferogram') parser.add_argument('-Lu', '--low_band_igram_unw_method', dest='lowBandIgramUnwMethod', type=str, required=True, help='unwrap method used for low band interferogram') parser.add_argument('-H', '--high_band_igram_prefix', dest='highBandIgramPrefix', type=str, required=True, help='prefix of unwrapped high band interferogram') parser.add_argument('-Hu', '--high_band_igram_unw_method', dest='highBandIgramUnwMethod', type=str, required=True, help='unwrap method used for high band interferogram') parser.add_argument('-o', '--outDir', dest='outDir', type=str, required=True, help='output directory') parser.add_argument('-a', '--low_band_shelve', dest='lowBandShelve', type=str, default=None, help='shelve file used to extract metadata') parser.add_argument('-b', '--high_band_shelve', dest='highBandShelve', type=str, default=None, help='shelve file used to extract metadata') parser.add_argument('-c', '--full_band_coherence', dest='fullBandCoherence', type=str, default=None, help='full band coherence') parser.add_argument('--low_band_coherence', dest='lowBandCoherence', type=str, default=None, help='low band coherence') parser.add_argument('--high_band_coherence', dest='highBandCoherence', type=str, default=None, help='high band coherence') parser.add_argument('--azimuth_looks', dest='azLooks', type=float, default=14.0, help='high band coherence') parser.add_argument('--range_looks', dest='rngLooks', type=float, default=4.0, help='high band coherence') parser.add_argument('--dispersive_filter_mask_type', dest='dispersive_filter_mask_type', type=str, default='connected_components', help='mask type for iterative low-pass filtering: connected_components or coherence') parser.add_argument('--dispersive_filter_coherence_threshold', dest='dispersive_filter_coherence_threshold', type=float, default=0.5, help='coherence threshold when mask type for iterative low-pass filtering is coherence') #parser.add_argument('-f', '--filter_sigma', dest='filterSigma', type=float, default=100.0, # help='sigma of the gaussian filter') parser.add_argument('--filter_sigma_x', dest='kernel_sigma_x', type=float, default=100.0, help='sigma of the gaussian filter in X direction, default=100') parser.add_argument('--filter_sigma_y', dest='kernel_sigma_y', type=float, default=100.0, help='sigma of the gaussian filter in Y direction, default=100') parser.add_argument('--filter_size_x', dest='kernel_x_size', type=float, default=800.0, help='size of the gaussian kernel in X direction, default = 800') parser.add_argument('--filter_size_y', dest='kernel_y_size', type=float, default=800.0, help='size of the gaussian kernel in Y direction, default=800') parser.add_argument('--filter_kernel_rotation', dest='kernel_rotation', type=float, default=0.0, help='rotation angle of the filter kernel in degrees (default = 0.0)') parser.add_argument('-i', '--iteration', dest='dispersive_filter_iterations', type=int, default=5, help='number of iteration for filtering and interpolation') parser.add_argument('-m', '--mask_file', dest='maskFile', type=str, default=None, help='a mask file with one for valid pixels and zero for non valid pixels.') parser.add_argument('-u', '--outlier_sigma', dest='outlierSigma', type=float, default=1.0, help='number of sigma for removing outliers. data outside (avergae +/- u*sigma) are considered as outliers. sigma is calculated from data/coherence. u is the user input. default u =1') parser.add_argument('-p', '--min_pixel_connected_component', dest='minPixelConnComp', type=int, default=1000.0, help='minimum number of pixels in a connected component to consider the component as valid. components with less pixel will be masked out') parser.add_argument('-r', '--ref', dest='ref', type=str, default=None, help='refernce pixel : row, column') return parser def cmdLineParse(iargs = None): parser = createParser() return parser.parse_args(args=iargs) def getValue(dataFile, band, y_ref, x_ref): ds = gdal.Open(dataFile, gdal.GA_ReadOnly) length = ds.RasterYSize width = ds.RasterXSize b = ds.GetRasterBand(band) ref = b.ReadAsArray(x_ref,y_ref,1,1) ds = None return ref[0][0] def check_consistency(lowBandIgram, highBandIgram, outputDir): jumpFile = os.path.join(outputDir , "jumps.bil") cmd = 'imageMath.py -e="round((a_1-b_1)/(2.0*PI))" --a={0} --b={1} -o {2} -t float -s BIL'.format(lowBandIgram, highBandIgram, jumpFile) print(cmd) os.system(cmd) return jumpFile def dispersive_nonDispersive(lowBandIgram, highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpFile, y_ref=None, x_ref=None, m=None , d=None): if y_ref and x_ref: refL = getValue(lowBandIgram, 2, y_ref, x_ref) refH = getValue(highBandIgram, 2, y_ref, x_ref) else: refL = 0.0 refH = 0.0 # m : common phase unwrapping error # d : differential phase unwrapping error if m and d: coef = (fL*fH)/(f0*(fH**2 - fL**2)) #cmd = 'imageMath.py -e="{0}*((a_1-{8}-2*PI*c)*{1}-(b_1-{9}-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} -o {7} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, m , d, outDispersive, refL, refH) cmd = 'imageMath.py -e="{0}*((a_1-2*PI*c)*{1}-(b_1+(2.0*PI*g)-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} --g={7} -o {8} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, m , d, jumpFile, outDispersive) print(cmd) os.system(cmd) coefn = f0/(fH**2-fL**2) #cmd = 'imageMath.py -e="{0}*((a_1-{8}-2*PI*c)*{1}-(b_1-{9}-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} -o {7} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, m , d, outNonDispersive, refH, refL) cmd = 'imageMath.py -e="{0}*((a_1+(2.0*PI*g)-2*PI*c)*{1}-(b_1-2*PI*(c+f))*{2})" --a={3} --b={4} --c={5} --f={6} --g={7} -o {8} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, m , d, jumpFile, outNonDispersive) print(cmd) os.system(cmd) else: coef = (fL*fH)/(f0*(fH**2 - fL**2)) #cmd = 'imageMath.py -e="{0}*((a_1-{6})*{1}-(b_1-{7})*{2})" --a={3} --b={4} -o {5} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, outDispersive, refL, refH) cmd = 'imageMath.py -e="{0}*(a_1*{1}-(b_1+2.0*PI*c)*{2})" --a={3} --b={4} --c={5} -o {6} -t float32 -s BIL'.format(coef,fH, fL, lowBandIgram, highBandIgram, jumpFile, outDispersive) print(cmd) os.system(cmd) coefn = f0/(fH**2-fL**2) #cmd = 'imageMath.py -e="{0}*((a_1-{6})*{1}-(b_1-{7})*{2})" --a={3} --b={4} -o {5} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, outNonDispersive, refH, refL) cmd = 'imageMath.py -e="{0}*((a_1+2.0*PI*c)*{1}-(b_1)*{2})" --a={3} --b={4} --c={5} -o {6} -t float32 -s BIL'.format(coefn,fH, fL, highBandIgram, lowBandIgram, jumpFile, outNonDispersive) print(cmd) os.system(cmd) return None def theoretical_variance_fromSubBands(inps, f0, fL, fH, B, Sig_phi_iono, Sig_phi_nonDisp,N): # Calculating the theoretical variance of the # ionospheric phase based on the coherence of # the sub-band interferograns #ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.lowBandSlcDirname) lowBandCoherence = inps.lowBandCoherence Sig_phi_L = inps.Sig_phi_L #ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.highBandSlcDirname) #highBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".unw") #ifgDirname = os.path.dirname(self.insar.lowBandIgram) #lowBandCoherence = os.path.join(ifgDirname , self.insar.coherenceFilename) #Sig_phi_L = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".sig") #ifgDirname = os.path.dirname(self.insar.highBandIgram) #highBandCoherence = os.path.join(ifgDirname , self.insar.coherenceFilename) #Sig_phi_H = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename + ".sig") highBandCoherence = inps.highBandCoherence Sig_phi_H = inps.Sig_phi_H #N = self.numberAzimuthLooks*self.numberRangeLooks #PI = np.pi #fL,f0,fH,B = getBandFrequencies(inps) #cL = read(inps.lowBandCoherence,bands=[1]) #cL = cL[0,:,:] #cL[cL==0.0]=0.001 cmd = 'imageMath.py -e="sqrt(1-a**2)/a/sqrt(2.0*{0})" --a={1} -o {2} -t float -s BIL'.format(N, lowBandCoherence, Sig_phi_L) print(cmd) os.system(cmd) #Sig_phi_L = np.sqrt(1-cL**2)/cL/np.sqrt(2.*N) #cH = read(inps.highBandCoherence,bands=[1]) #cH = cH[0,:,:] #cH[cH==0.0]=0.001 cmd = 'imageMath.py -e="sqrt(1-a**2)/a/sqrt(2.0*{0})" --a={1} -o {2} -t float -s BIL'.format(N, highBandCoherence, Sig_phi_H) print(cmd) os.system(cmd) #Sig_phi_H = np.sqrt(1-cH**2)/cH/np.sqrt(2.0*N) coef = (fL*fH)/(f0*(fH**2 - fL**2)) cmd = 'imageMath.py -e="sqrt(({0}**2)*({1}**2)*(a**2) + ({0}**2)*({2}**2)*(b**2))" --a={3} --b={4} -o {5} -t float -s BIL'.format(coef, fL, fH, Sig_phi_L, Sig_phi_H, Sig_phi_iono) os.system(cmd) #Sig_phi_iono = np.sqrt((coef**2)*(fH**2)*Sig_phi_H**2 + (coef**2)*(fL**2)*Sig_phi_L**2) #length, width = Sig_phi_iono.shape #outFileIono = os.path.join(inps.outDir, 'Sig_iono.bil') #write(Sig_phi_iono, outFileIono, 1, 6) #write_xml(outFileIono, length, width) coef_non = f0/(fH**2 - fL**2) cmd = 'imageMath.py -e="sqrt(({0}**2)*({1}**2)*(a**2) + ({0}**2)*({2}**2)*(b**2))" --a={3} --b={4} -o {5} -t float -s BIL'.format(coef_non, fL, fH, Sig_phi_L, Sig_phi_H, Sig_phi_nonDisp) os.system(cmd) #Sig_phi_non_dis = np.sqrt((coef_non**2) * (fH**2) * Sig_phi_H**2 + (coef_non**2) * (fL**2) * Sig_phi_L**2) #outFileNonDis = os.path.join(inps.outDir, 'Sig_nonDis.bil') #write(Sig_phi_non_dis, outFileNonDis, 1, 6) #write_xml(outFileNonDis, length, width) return None #Sig_phi_iono, Sig_phi_nonDisp def lowPassFilter(dataFile, sigDataFile, maskFile, Sx, Sy, sig_x, sig_y, iteration=5, theta=0.0): ds = gdal.Open(dataFile + '.vrt', gdal.GA_ReadOnly) length = ds.RasterYSize width = ds.RasterXSize dataIn = np.memmap(dataFile, dtype=np.float32, mode='r', shape=(length,width)) sigData = np.memmap(sigDataFile, dtype=np.float32, mode='r', shape=(length,width)) mask = np.memmap(maskFile, dtype=np.byte, mode='r', shape=(length,width)) dataF, sig_dataF = iterativeFilter(dataIn[:,:], mask[:,:], sigData[:,:], iteration, Sx, Sy, sig_x, sig_y, theta) filtDataFile = dataFile + ".filt" sigFiltDataFile = sigDataFile + ".filt" filtData = np.memmap(filtDataFile, dtype=np.float32, mode='w+', shape=(length,width)) filtData[:,:] = dataF[:,:] filtData.flush() sigFilt= np.memmap(sigFiltDataFile, dtype=np.float32, mode='w+', shape=(length,width)) sigFilt[:,:] = sig_dataF[:,:] sigFilt.flush() # writing xml and vrt files write_xml(filtDataFile, width, length, 1, "FLOAT", "BIL") write_xml(sigFiltDataFile, width, length, 1, "FLOAT", "BIL") return filtDataFile, sigFiltDataFile def write_xml(fileName,width,length,bands,dataType,scheme): img = isceobj.createImage() img.setFilename(fileName) img.setWidth(width) img.setLength(length) img.setAccessMode('READ') img.bands = bands img.dataType = dataType img.scheme = scheme img.renderHdr() img.renderVRT() return None def iterativeFilter(dataIn, mask, Sig_dataIn, iteration, Sx, Sy, sig_x, sig_y, theta=0.0): data = np.zeros(dataIn.shape) data[:,:] = dataIn[:,:] Sig_data = np.zeros(dataIn.shape) Sig_data[:,:] = Sig_dataIn[:,:] print ('masking the data') data[mask==0]=np.nan Sig_data[mask==0]=np.nan print ('Filling the holes with nearest neighbor interpolation') dataF = fill(data) Sig_data = fill(Sig_data) print ('Low pass Gaussian filtering the interpolated data') dataF, Sig_dataF = Filter(dataF, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0) for i in range(iteration): print ('iteration: ', i , ' of ',iteration) print ('masking the interpolated and filtered data') dataF[mask==0]=np.nan print('Filling the holes with nearest neighbor interpolation of the filtered data from previous step') dataF = fill(dataF) print('Replace the valid pixels with original unfiltered data') dataF[mask==1]=data[mask==1] dataF, Sig_dataF = Filter(dataF, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0) return dataF, Sig_dataF def Filter(data, Sig_data, Sx, Sy, sig_x, sig_y, theta=0.0): kernel = Gaussian_kernel(Sx, Sy, sig_x, sig_y) #(800, 800, 15.0, 100.0) kernel = rotate(kernel , theta) data = data/Sig_data**2 data = cv2.filter2D(data,-1,kernel) W1 = cv2.filter2D(1.0/Sig_data**2,-1,kernel) W2 = cv2.filter2D(1.0/Sig_data**2,-1,kernel**2) #data = ndimage.convolve(data,kernel, mode='nearest') #W1 = ndimage.convolve(1.0/Sig_data**2,kernel, mode='nearest') #W2 = ndimage.convolve(1.0/Sig_data**2,kernel**2, mode='nearest') return data/W1, np.sqrt(W2/(W1**2)) def Gaussian_kernel(Sx, Sy, sig_x,sig_y): if np.mod(Sx,2) == 0: Sx = Sx + 1 if np.mod(Sy,2) ==0: Sy = Sy + 1 x,y = np.meshgrid(np.arange(Sx),np.arange(Sy)) x = x + 1 y = y + 1 x0 = (Sx+1)/2 y0 = (Sy+1)/2 fx = ((x-x0)**2.)/(2.*sig_x**2.) fy = ((y-y0)**2.)/(2.*sig_y**2.) k = np.exp(-1.0*(fx+fy)) a = 1./np.sum(k) k = a*k return k def rotate(k , theta): Sy,Sx = np.shape(k) x,y = np.meshgrid(np.arange(Sx),np.arange(Sy)) x = x + 1 y = y + 1 x0 = (Sx+1)/2 y0 = (Sy+1)/2 x = x - x0 y = y - y0 A=np.vstack((x.flatten(), y.flatten())) if theta!=0: theta = theta*np.pi/180. R = np.array([[np.cos(theta), -1.0*np.sin(theta)],[np.sin(theta), np.cos(theta)]]) AR = np.dot(R,A) xR = AR[0,:].reshape(Sy,Sx) yR = AR[1,:].reshape(Sy,Sx) k = mlab.griddata(x.flatten(),y.flatten(),k.flatten(),xR,yR, interp='linear') #k = f(xR, yR) k = k.data k[np.isnan(k)] = 0.0 a = 1./np.sum(k) k = a*k return k def fill(data, invalid=None): """ Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell Input: data: numpy array of any dimension invalid: a binary array of same shape as 'data'. data value are replaced where invalid is True If None (default), use: invalid = np.isnan(data) Output: Return a filled array. """ if invalid is None: invalid = np.isnan(data) ind = ndimage.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] def getMask(inps, maskFile): lowBandIgram = inps.lowBandIgram lowBandCor = inps.lowBandCoherence #lowBandIgram.replace("_snaphu.unw", ".cor") highBandIgram = inps.highBandIgram highBandCor = inps.highBandCoherence #highBandIgram.replace("_snaphu.unw", ".cor") if inps.dispersive_filter_mask_type == "coherence": print ('generating a mask based on coherence files of sub-band interferograms with a threshold of {0}'.format(inps.dispersive_filter_coherence_threshold)) cmd = 'imageMath.py -e="(a>{0})*(b>{0})" --a={1} --b={2} -t byte -s BIL -o {3}'.format(inps.dispersive_filter_coherence_threshold, lowBandCor, highBandCor, maskFile) os.system(cmd) elif (inps.dispersive_filter_mask_type == "connected_components") and ((os.path.exists(lowBandIgram + '.conncomp')) and (os.path.exists(highBandIgram + '.conncomp'))): # If connected components from snaphu exists, let's get a mask based on that. # Regions of zero are masked out. Let's assume that islands have been connected. print ('generating a mask based on .conncomp files') cmd = 'imageMath.py -e="(a>0)*(b>0)" --a={0} --b={1} -t byte -s BIL -o {2}'.format(lowBandIgram + '.conncomp', highBandIgram + '.conncomp', maskFile) os.system(cmd) else: print ('generating a mask based on unwrapped files. Pixels with phase = 0 are masked out.') cmd = 'imageMath.py -e="(a_1!=0)*(b_1!=0)" --a={0} --b={1} -t byte -s BIL -o {2}'.format(lowBandIgram , highBandIgram , maskFile) os.system(cmd) def unwrapp_error_correction(f0, B, dispFile, nonDispFile,lowBandIgram, highBandIgram, jumpsFile, y_ref=None, x_ref=None): dFile = os.path.join(os.path.dirname(dispFile) , "dJumps.bil") mFile = os.path.join(os.path.dirname(dispFile) , "mJumps.bil") if y_ref and x_ref: refL = getValue(lowBandIgram, 2, y_ref, x_ref) refH = getValue(highBandIgram, 2, y_ref, x_ref) else: refL = 0.0 refH = 0.0 #cmd = 'imageMath.py -e="round(((a_1-{7}) - (b_1-{8}) - (2.0*{0}/3.0/{1})*c + (2.0*{0}/3.0/{1})*f )/2.0/PI)" --a={2} --b={3} --c={4} --f={5} -o {6} -t float32 -s BIL'.format(B, f0, highBandIgram, lowBandIgram, nonDispFile, dispFile, dFile, refH, refL) cmd = 'imageMath.py -e="round(((a_1+(2.0*PI*g)) - (b_1) - (2.0*{0}/3.0/{1})*c + (2.0*{0}/3.0/{1})*f )/2.0/PI)" --a={2} --b={3} --c={4} --f={5} --g={6} -o {7} -t float32 -s BIL'.format(B, f0, highBandIgram, lowBandIgram, nonDispFile, dispFile, jumpsFile, dFile) print(cmd) os.system(cmd) #d = (phH - phL - (2.*B/3./f0)*ph_nondis + (2.*B/3./f0)*ph_iono )/2./PI #d = np.round(d) #cmd = 'imageMath.py -e="round(((a_1 - {6}) + (b_1-{7}) - 2.0*c - 2.0*f )/4.0/PI - g/2)" --a={0} --b={1} --c={2} --f={3} --g={4} -o {5} -t float32 -s BIL'.format(lowBandIgram, highBandIgram, nonDispFile, dispFile, dFile, mFile, refL, refH) cmd = 'imageMath.py -e="round(((a_1 ) + (b_1+(2.0*PI*k)) - 2.0*c - 2.0*f )/4.0/PI - g/2)" --a={0} --b={1} --c={2} --f={3} --g={4} --k={5} -o {6} -t float32 -s BIL'.format(lowBandIgram, highBandIgram, nonDispFile, dispFile, dFile, jumpsFile, mFile) print(cmd) os.system(cmd) #m = (phL + phH - 2*ph_nondis - 2*ph_iono)/4./PI - d/2. #m = np.round(m) return mFile , dFile def getBandFrequencies(inps): with shelve.open(inps.lowBandShelve, flag='r') as db: frameL = db['frame'] wvl0 = frameL.radarWavelegth wvlL = frameL.subBandRadarWavelength with shelve.open(inps.highBandShelve, flag='r') as db: frameH = db['frame'] wvlH = frameH.subBandRadarWavelength pulseLength = frameH.instrument.pulseLength chirpSlope = frameH.instrument.chirpSlope # Total Bandwidth B = np.abs(chirpSlope)*pulseLength return wvl0, wvlL, wvlH, B def main(iargs=None): inps = cmdLineParse(iargs) ''' ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.lowBandSlcDirname) lowBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename) if '.flat' in lowBandIgram: lowBandIgram = lowBandIgram.replace('.flat', '.unw') elif '.int' in lowBandIgram: lowBandIgram = lowBandIgram.replace('.int', '.unw') else: lowBandIgram += '.unw' ifgDirname = os.path.join(self.insar.ifgDirname, self.insar.highBandSlcDirname) highBandIgram = os.path.join(ifgDirname , 'filt_' + self.insar.ifgFilename) if '.flat' in highBandIgram: highBandIgram = highBandIgram.replace('.flat', '.unw') elif '.int' in highBandIgram: highBandIgram = highBandIgram.replace('.int', '.unw') else: highBandIgram += '.unw' ''' ########## # construct the unwrap and unwrap connected component filenames for both high and low band interferogams # allow for different connected component files for the low and high band images depending what the user preferred # for snaphu2stage: use snaphu connected component # for snaphu: use snaphu connected component # for icu: use icu connected component # lowband file if inps.lowBandIgramUnwMethod == 'snaphu' or inps.lowBandIgramUnwMethod == 'snaphu2stage': lowBandconncomp = inps.lowBandIgramPrefix + '_snaphu.unw.conncomp' elif inps.lowBandIgramUnwMethod == 'icu': lowBandconncomp = inps.lowBandIgramPrefix + '_icu.unw.conncomp' inps.lowBandconncomp = lowBandconncomp inps.lowBandIgram = inps.lowBandIgramPrefix + '_' + inps.lowBandIgramUnwMethod + '.unw' # highband file if inps.highBandIgramUnwMethod == 'snaphu' or inps.highBandIgramUnwMethod == 'snaphu2stage': highBandconncomp = inps.highBandIgramPrefix + '_snaphu.unw.conncomp' elif inps.highBandIgramUnwMethod == 'icu': highBandconncomp = inps.highBandIgramPrefix + '_icu.unw.conncomp' inps.highBandconncomp = highBandconncomp inps.highBandIgram = inps.highBandIgramPrefix + '_' + inps.highBandIgramUnwMethod + '.unw' # print a summary for the user print('Files to be used for estimating ionosphere:') print('**Low band files:') print(inps.lowBandIgram) print(inps.lowBandconncomp) print('**High band files:') print(inps.highBandIgram) print(inps.highBandconncomp) # generate the output directory if it does not exist yet, and back-up the shelve files if not os.path.exists(inps.outDir): os.makedirs(inps.outDir) lowBandShelve = os.path.join(inps.outDir, 'lowBandShelve') highBandShelve = os.path.join(inps.outDir, 'highBandShelve') if not os.path.exists(lowBandShelve): os.makedirs(lowBandShelve) if not os.path.exists(highBandShelve): os.makedirs(highBandShelve) cmdCp = 'cp ' + inps.lowBandShelve + '* ' + lowBandShelve os.system(cmdCp) cmdCp = 'cp ' + inps.highBandShelve + '* ' + highBandShelve os.system(cmdCp) inps.lowBandShelve = os.path.join(lowBandShelve, 'data') inps.highBandShelve = os.path.join(highBandShelve, 'data') ''' outputDir = self.insar.ionosphereDirname if os.path.isdir(outputDir): logger.info('Ionosphere directory {0} already exists.'.format(outputDir)) else: os.makedirs(outputDir) ''' outDispersive = os.path.join(inps.outDir, 'iono.bil') sigmaDispersive = outDispersive + ".sig" outNonDispersive = os.path.join(inps.outDir, 'nonDispersive.bil') sigmaNonDispersive = outNonDispersive + ".sig" inps.Sig_phi_L = os.path.join(inps.outDir, 'lowBand.Sigma') inps.Sig_phi_H = os.path.join(inps.outDir, 'highBand.Sigma') maskFile = os.path.join(inps.outDir, "mask.bil") #masterFrame = self._insar.loadProduct( self._insar.masterSlcCropProduct) wvl, wvlL, wvlH, B = getBandFrequencies(inps) f0 = SPEED_OF_LIGHT/wvl fL = SPEED_OF_LIGHT/wvlL fH = SPEED_OF_LIGHT/wvlH ###Determine looks #azLooks, rgLooks = self.insar.numberOfLooks( masterFrame, self.posting, # self.numberAzimuthLooks, self.numberRangeLooks) ######################################################### # make sure the low-band and high-band interferograms have consistent unwrapping errors. # For this we estimate jumps as the difference of lowBand and highBand phases divided by 2PI # The assumprion is that bothe interferograms are flattened and the phase difference between them # is less than 2PI. This assumprion is valid for current sensors. It needs to be evaluated for # future sensors like NISAR. jumpsFile = check_consistency(inps.lowBandIgram, inps.highBandIgram, inps.outDir) ######################################################### # estimating the dispersive and non-dispersive components dispersive_nonDispersive(inps.lowBandIgram, inps.highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpsFile) # generating a mask which will help filtering the estimated dispersive and non-dispersive phase getMask(inps, maskFile) # Calculating the theoretical standard deviation of the estimation based on the coherence of the interferograms theoretical_variance_fromSubBands(inps, f0, fL, fH, B, sigmaDispersive, sigmaNonDispersive, inps.azLooks * inps.rngLooks) # low pass filtering the dispersive phase lowPassFilter(outDispersive, sigmaDispersive, maskFile, inps.kernel_x_size, inps.kernel_y_size, inps.kernel_sigma_x, inps.kernel_sigma_y, iteration = inps.dispersive_filter_iterations, theta = inps.kernel_rotation) # low pass filtering the non-dispersive phase lowPassFilter(outNonDispersive, sigmaNonDispersive, maskFile, inps.kernel_x_size, inps.kernel_y_size, inps.kernel_sigma_x, inps.kernel_sigma_y, iteration = inps.dispersive_filter_iterations, theta = inps.kernel_rotation) # Estimating phase unwrapping errors mFile , dFile = unwrapp_error_correction(f0, B, outDispersive+".filt", outNonDispersive+".filt", inps.lowBandIgram, inps.highBandIgram, jumpsFile) # re-estimate the dispersive and non-dispersive phase components by taking into account the unwrapping errors outDispersive = outDispersive + ".unwCor" outNonDispersive = outNonDispersive + ".unwCor" dispersive_nonDispersive(inps.lowBandIgram, inps.highBandIgram, f0, fL, fH, outDispersive, outNonDispersive, jumpsFile, m=mFile , d=dFile) # low pass filtering the new estimations lowPassFilter(outDispersive, sigmaDispersive, maskFile, inps.kernel_x_size, inps.kernel_y_size, inps.kernel_sigma_x, inps.kernel_sigma_y, iteration = inps.dispersive_filter_iterations, theta = inps.kernel_rotation) lowPassFilter(outNonDispersive, sigmaNonDispersive, maskFile, inps.kernel_x_size, inps.kernel_y_size, inps.kernel_sigma_x, inps.kernel_sigma_y, iteration = inps.dispersive_filter_iterations, theta = inps.kernel_rotation) if __name__ == '__main__': ''' Main driver. ''' main()