#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: Giangi Sacco #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import math import datetime import logging from iscesys.Component.Component import Component, Port from isceobj.Orbit.Orbit import StateVector import numpy as np BASELINE_LOCATION = Component.Parameter('baselineLocation', public_name = 'BASELINE_LOCATION', default = 'all', type=str, mandatory=False, doc = 'Location at which to compute baselines - "all" implies top, middle, bottom of reference image, "top" implies near start of reference image, "bottom" implies at bottom of reference image, "middle" implies near middle of reference image. To be used in case there is a large shift between images.') class Baseline(Component): family = 'baseline' logging_name = 'isce.zerodop.baseline' parameter_list = (BASELINE_LOCATION,) # Calculate the baseline components between two frames def baseline(self): from isceobj.Util.geo.ellipsoid import Ellipsoid from isceobj.Planet.Planet import Planet for port in self.inputPorts: port() planet = Planet(pname='Earth') refElp = Ellipsoid(a=planet.ellipsoid.a, e2=planet.ellipsoid.e2, model='WGS84') if self.baselineLocation.lower() == 'all': print('Using entire span of image for estimating baselines') referenceTime = [self.referenceFrame.getSensingStart(),self.referenceFrame.getSensingMid(),self.referenceFrame.getSensingStop()] elif self.baselineLocation.lower() == 'middle': print('Estimating baselines around center of reference image') referenceTime = [self.referenceFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingMid(), self.referenceFrame.getSensingMid() + datetime.timedelta(seconds=1.0)] elif self.baselineLocation.lower() == 'top': print('Estimating baselines at top of reference image') referenceTime = [self.referenceFrame.getSensingStart(), self.referenceFrame.getSensingStart() + datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingStart() + datetime.timedelta(seconds=2.0)] elif self.baselineLocation.lower() == 'bottom': print('Estimating baselines at bottom of reference image') referenceTime = [self.referenceFrame.getSensingStop() - datetime.timedelta(seconds=2.0), self.referenceFrame.getSensingStop() - datetime.timedelta(seconds=1.0), self.referenceFrame.getSensingStop()] else: raise Exception('Unknown baseline location: {0}'.format(self.baselineLocation)) s = [0., 0., 0.] bpar = [] bperp = [] azoff = [] rgoff = [] for i in range(3): # Calculate the Baseline at the start of the scene, mid-scene, and the end of the scene # First, get the position and velocity at the start of the scene # Calculate the distance moved since the last baseline point s[i] = (referenceTime[i] - referenceTime[0]).total_seconds() referenceSV = self.referenceOrbit.interpolateOrbit(referenceTime[i], method='hermite') rng = self.startingRange1 target = self.referenceOrbit.pointOnGround(referenceTime[i], rng, side=self.referenceFrame.getInstrument().getPlatform().pointingDirection) secondaryTime, slvrng = self.secondaryOrbit.geo2rdr(target) secondarySV = self.secondaryOrbit.interpolateOrbit(secondaryTime, method='hermite') targxyz = np.array(refElp.LLH(target[0], target[1], target[2]).ecef().tolist()) mxyz = np.array(referenceSV.getPosition()) mvel = np.array(referenceSV.getVelocity()) sxyz = np.array(secondarySV.getPosition()) mvelunit = mvel / np.linalg.norm(mvel) sxyz = sxyz - np.dot ( sxyz-mxyz, mvelunit) * mvelunit aa = np.linalg.norm(sxyz-mxyz) costheta = (rng*rng + aa*aa - slvrng*slvrng)/(2.*rng*aa) # print(aa, costheta) bpar.append(aa*costheta) perp = aa * np.sqrt(1 - costheta*costheta) direction = np.sign(np.dot( np.cross(targxyz-mxyz, sxyz-mxyz), mvel)) bperp.append(direction*perp) ####Azimuth offset slvaz = (secondaryTime - self.secondaryFrame.sensingStart).total_seconds() * self.prf2 masaz = s[i] * self.prf1 azoff.append(slvaz - masaz) ####Range offset slvrg = (slvrng - self.startingRange2)/self.rangePixelSize2 masrg = (rng - self.startingRange1) / self.rangePixelSize1 rgoff.append(slvrg - masrg) # print(bpar) # print(bperp) #Calculating baseline parBaselinePolynomialCoefficients = np.polyfit(s,bpar,2) perpBaselinePolynomialCoefficients = np.polyfit(s,bperp,2) # Populate class attributes self.BparMean = parBaselinePolynomialCoefficients[-1] self.BparRate = parBaselinePolynomialCoefficients[1] self.BparAcc = parBaselinePolynomialCoefficients[0] self.BperpMean = perpBaselinePolynomialCoefficients[-1] self.BperpRate = perpBaselinePolynomialCoefficients[1] self.BperpAcc = perpBaselinePolynomialCoefficients[0] delta = (self.referenceFrame.getSensingStart() - referenceTime[0]).total_seconds() self.BparTop = np.polyval(parBaselinePolynomialCoefficients, delta) self.BperpTop = np.polyval(perpBaselinePolynomialCoefficients, delta) delta = (self.referenceFrame.getSensingStop() - referenceTime[0]).total_seconds() self.BparBottom = np.polyval(parBaselinePolynomialCoefficients, delta) self.BperpBottom = np.polyval(perpBaselinePolynomialCoefficients, delta) return azoff, rgoff def setReferenceRangePixelSize(self,pixelSize): self.rangePixelSize1 = pixelSize return def setSecondaryRangePixelSize(self,pixelSize): self.rangePixelSize2 = pixelSize return def setReferenceStartingRange(self,range): self.startingRange1 = range return def setSecondaryStartingRange(self,range): self.startingRange2 = range return def setReferencePRF(self,prf): self.prf1 = prf return def setSecondaryPRF(self,prf): self.prf2 = prf return def getHBaselineTop(self): return self.hBaselineTop def getHBaselineRate(self): return self.hBaselineRate def getHBaselineAcc(self): return self.hBaselineAcc def getVBaselineTop(self): return self.vBaselineTop def getVBaselineRate(self): return self.vBaselineRate def getVBaselineAcc(self): return self.vBaselineAcc def getPBaselineTop(self): return self.pBaselineTop def getPBaselineBottom(self): return self.pBaselineBottom def addReferenceFrame(self): frame = self._inputPorts.getPort(name='referenceFrame').getObject() self.startingRange1 = frame.getStartingRange() self.prf1 = frame.getInstrument().getPulseRepetitionFrequency() self.rangePixelSize1 = frame.getInstrument().getRangePixelSize() self.referenceOrbit = frame.getOrbit() self.referenceFrame = frame def addSecondaryFrame(self): frame = self._inputPorts.getPort(name='secondaryFrame').getObject() self.startingRange2 = frame.getStartingRange() self.secondaryOrbit = frame.getOrbit() self.prf2 = frame.getInstrument().getPulseRepetitionFrequency() self.rangePixelSize2 = frame.getInstrument().getRangePixelSize() self.secondaryFrame = frame def __init__(self, name=''): super(Baseline, self).__init__(family=self.__class__.family, name=name) self.referenceOrbit = None self.secondaryOrbit = None self.referenceFrame = None self.secondaryFrame = None self.rangePixelSize1 = None self.rangePixelSize2 = None self.startingRange1 = None self.startingRange2 = None self.prf1 = None self.prf2 = None self.lookSide = None self.BparMean = None self.BparRate = None self.BparAcc = None self.BperpMean = None self.BperpRate = None self.BperpAcc = None self.BperpTop = None self.BperpBottom = None self.BparTop = None self.BperpBottom = None self.logger = logging.getLogger('isce.zerodop.baseline') self.createPorts() # Satisfy the old Component self.dictionaryOfOutputVariables = {} self.dictionaryOfVariables = {} self.descriptionOfVariables = {} self.mandatoryVariables = [] self.optionalVariables = [] return None def createPorts(self): # Set input ports # It looks like we really need two orbits, a time, range and azimuth pixel sizes # the two starting ranges, a planet, and the two prfs # These provide the orbits # These provide the range and azimuth pixel sizes, starting ranges, # satellite heights and times for the first lines referenceFramePort = Port(name='referenceFrame',method=self.addReferenceFrame) secondaryFramePort = Port(name='secondaryFrame',method=self.addSecondaryFrame) self._inputPorts.add(referenceFramePort) self._inputPorts.add(secondaryFramePort) return None def __str__(self): retstr = "Initial Baseline estimates \n" retlst = () retstr += "Parallel Baseline Top: %s\n" retlst += (self.BparTop,) retstr += "Perpendicular Baseline Top: %s\n" retlst += (self.BperpTop,) retstr += "Parallel Baseline Bottom: %s\n" retlst += (self.BparBottom,) retstr += "Perpendicular Baseline Bottom: %s \n" retlst += (self.BperpBottom,) return retstr % retlst