#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2012 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: Eric Belz #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """A very simple 1st order differentiator""" ## \namespace ::geo::dxdt A simple differentiator ## numerical derivative algorithm \n ## see http://docs.scipy.org/doc/scipy/reference/misc.html for other ## functions (maybe better). def deriv(x,y=None): """(dy/dx) = deriv(x [,y=None])""" import numpy if y is None: return deriv(numpy.arange(len(x), dtype=float), x) n = len(x) if n < 3: print('Parameters must have at least 3 points') raise ValueError if n != len(y): print('x and y must have same length') raise ValueError Sleft = Shifter(1) Sright = ~Sleft x12 = x - Sleft(x) #x1 - x2 x01 = Sright(x) - x #x0 - x1 x02 = Sright(x) - Sleft(x) #x0 - x2 d = (Sright(y) * (x12 / (x01*x02)) + y * (1./x12 - 1./x01) - Sleft(y) * (x01 / (x02 * x12))) d[0] = y[0] * (x01[1]+x02[1])/(x01[1]*x02[1]) - y[1] * x02[1]/(x01[1]*x12[1]) + y[2] * x01[1]/(x02[1]*x12[1]) n2 = n-2 d[n-1] = -y[n-3] * x12[n2]/(x01[n2]*x02[n2]) + y[n-2] * x02[n2]/(x01[n2]*x12[n2]) -y[n-1] * (x02[n2]+x12[n2]) / (x02[n2]*x12[n2]) return d ## integer index shift of an array \f$ x'_i = x_{(i+n)\, \bmod\, {\rm len}\, x} \f$, with wrapping def ishift(x, m=0): """shift index, e.g.: In [4]: dsp.ishift([0,1,2,3,4,5], 2) Out[4]: [2, 3, 4, 5, 0, 1] """ import numpy L = len(x) y = numpy.zeros_like(x) n = m%L y[:L-n] = x[n:] y[L-n:] = x[:n] return y ## \f$ [S_n(x)]_i \rightarrow x_{i+n} \f$ \n Shifter wraps ishift() ir fshift() with fixed n as a circular buffer (http://en.wikipedia.org/wiki/Circular_buffer ) \n For fixed length, the frequency domain phase ramp is precomputed, so it will be faster for repeated use. class Shifter(object): ## number of indices to shift: def __init__(self, n, length = None): ## \f$n\f$ is the number of indices to shift self.n = n self.length = length if isinstance(n, (int, long)): F = lambda x: ishift(x, self.n) else: if length is None: F = lambda x: fshift(x, self.n) else: f_shifter = fshifter(self.length, self.n) F = lambda x: fftpack.ifft(fftpack.fft(x)*f_shifter) pass self.F = F return None ## int(self) = self.n def __int__(self): return self.n ## float(self) = self.n def __float__(self): return self.n ## len(self) = self.length, which is optional\n If self.length is not None, then the shifter is created at __init__(), not __call__(). def __len__(self): return self.length if self.length else 0 ## inverse shift def __invert__(self): return self.__class__(-self.n) ## self(n)(x) = ::ishift(x, self.n) def __call__(self, x): return self.F(x) pass