Merge pull request #82 from rtburns-jpl/hide-imports
Hide rubbersheeting scipy/astropy importsLT1AB
commit
db8930151f
|
@ -9,7 +9,6 @@ from isceobj.Constants import SPEED_OF_LIGHT
|
|||
import numpy as np
|
||||
import gdal
|
||||
|
||||
from scipy import ndimage
|
||||
try:
|
||||
import cv2
|
||||
except ImportError:
|
||||
|
@ -296,6 +295,8 @@ def fill(data, invalid=None):
|
|||
Output:
|
||||
Return a filled array.
|
||||
"""
|
||||
from scipy import ndimage
|
||||
|
||||
if invalid is None: invalid = np.isnan(data)
|
||||
|
||||
ind = ndimage.distance_transform_edt(invalid,
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
import isce
|
||||
import isceobj
|
||||
from osgeo import gdal
|
||||
from scipy import ndimage
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
|
@ -24,6 +23,9 @@ def fill(data, invalid=None):
|
|||
Output:
|
||||
Return a filled array.
|
||||
"""
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
if invalid is None: invalid = np.isnan(data)
|
||||
|
||||
ind = ndimage.distance_transform_edt(invalid,
|
||||
|
@ -35,6 +37,8 @@ def fill(data, invalid=None):
|
|||
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
|
||||
#masking and Filtering
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
##Read in the offset file
|
||||
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
|
||||
Offset = ds.GetRasterBand(1).ReadAsArray()
|
||||
|
|
|
@ -9,14 +9,14 @@
|
|||
import isce
|
||||
import isceobj
|
||||
from osgeo import gdal
|
||||
from scipy import ndimage
|
||||
from astropy.convolution import convolve
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
|
||||
# Masking the offsets with a data-based approach
|
||||
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
# Open the offsets
|
||||
ds = gdal.Open(denseOffsetFile+'.vrt',gdal.GA_ReadOnly)
|
||||
off_az = ds.GetRasterBand(1).ReadAsArray()
|
||||
|
@ -79,6 +79,9 @@ def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
|
|||
|
||||
|
||||
def off_masking(off,filterSize,thre=2):
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
# Define the mask to fill the offsets
|
||||
vram = ndimage.median_filter(off.real, filterSize)
|
||||
vazm = ndimage.median_filter(off.imag, filterSize)
|
||||
|
@ -112,6 +115,8 @@ def fill(data, invalid=None):
|
|||
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
|
||||
#masking and Filtering
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
##Read in the offset file
|
||||
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
|
||||
Offset = ds.GetRasterBand(band).ReadAsArray()
|
||||
|
@ -154,7 +159,9 @@ def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outNam
|
|||
return None
|
||||
|
||||
def fill_with_smoothed(off,filterSize):
|
||||
|
||||
|
||||
from astropy.convolution import convolve
|
||||
|
||||
off_2filt=np.copy(off)
|
||||
kernel = np.ones((filterSize,filterSize),np.float32)/(filterSize*filterSize)
|
||||
loop = 0
|
||||
|
|
|
@ -9,15 +9,14 @@
|
|||
import isce
|
||||
import isceobj
|
||||
from osgeo import gdal
|
||||
from scipy import ndimage
|
||||
import numpy as np
|
||||
import os
|
||||
from astropy.convolution import convolve
|
||||
|
||||
|
||||
def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
|
||||
# Masking the offsets with a data-based approach
|
||||
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
# Open the offsets
|
||||
ds = gdal.Open(denseOffsetFile+'.vrt',gdal.GA_ReadOnly)
|
||||
off_az = ds.GetRasterBand(1).ReadAsArray()
|
||||
|
@ -78,6 +77,9 @@ def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
|
|||
return
|
||||
|
||||
def off_masking(off,filterSize,thre=2):
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
vram = ndimage.median_filter(off.real, filterSize)
|
||||
vazm = ndimage.median_filter(off.imag, filterSize)
|
||||
|
||||
|
@ -100,6 +102,8 @@ def fill(data, invalid=None):
|
|||
Output:
|
||||
Return a filled array.
|
||||
"""
|
||||
from scipy import ndimage
|
||||
|
||||
if invalid is None: invalid = np.isnan(data)
|
||||
|
||||
ind = ndimage.distance_transform_edt(invalid,
|
||||
|
@ -108,7 +112,9 @@ def fill(data, invalid=None):
|
|||
return data[tuple(ind)]
|
||||
|
||||
def fill_with_smoothed(off,filterSize):
|
||||
|
||||
|
||||
from astropy.convolution import convolve
|
||||
|
||||
off_2filt=np.copy(off)
|
||||
kernel = np.ones((filterSize,filterSize),np.float32)/(filterSize*filterSize)
|
||||
loop = 0
|
||||
|
@ -131,6 +137,8 @@ def fill_with_smoothed(off,filterSize):
|
|||
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
|
||||
#masking and Filtering
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
##Read in the offset file
|
||||
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
|
||||
Offset = ds.GetRasterBand(band).ReadAsArray()
|
||||
|
@ -236,6 +244,8 @@ def resampleOffset(maskedFiltOffset, geometryOffset, outName):
|
|||
|
||||
def runRubbersheetRange(self):
|
||||
|
||||
from scipy import ndimage
|
||||
|
||||
if not self.doRubbersheetingRange:
|
||||
print('Rubber sheeting in azimuth not requested ... skipping')
|
||||
return
|
||||
|
|
|
@ -9,9 +9,6 @@ import shutil
|
|||
import datetime
|
||||
import numpy as np
|
||||
import numpy.matlib
|
||||
import scipy.signal as ss
|
||||
from scipy import interpolate
|
||||
from scipy.interpolate import interp1d
|
||||
|
||||
import isceobj
|
||||
import logging
|
||||
|
@ -638,6 +635,7 @@ def cal_coherence(inf, win=5, edge=0):
|
|||
|
||||
4: keep all samples
|
||||
'''
|
||||
import scipy.signal as ss
|
||||
|
||||
if win % 2 != 1:
|
||||
raise Exception('window size must be odd!')
|
||||
|
@ -1682,6 +1680,9 @@ def computeDopplerOffset(burst, firstline, lastline, firstcolumn, lastcolumn, nr
|
|||
|
||||
output: first lines > 0, last lines < 0
|
||||
'''
|
||||
from scipy import interpolate
|
||||
from scipy.interpolate import interp1d
|
||||
|
||||
Vs = np.linalg.norm(burst.orbit.interpolateOrbit(burst.sensingMid, method='hermite').getVelocity())
|
||||
Ks = 2 * Vs * burst.azimuthSteeringRate / burst.radarWavelength
|
||||
|
||||
|
@ -1830,6 +1831,7 @@ def adaptive_gaussian(ionos, wgt, size_max, size_min):
|
|||
size_max: maximum window size
|
||||
size_min: minimum window size
|
||||
'''
|
||||
import scipy.signal as ss
|
||||
|
||||
length = (ionos.shape)[0]
|
||||
width = (ionos.shape)[1]
|
||||
|
@ -1892,6 +1894,8 @@ def filt_gaussian(self, ionParam):
|
|||
currently not implemented.
|
||||
a less accurate method is to use ionsphere without any projection
|
||||
'''
|
||||
from scipy import interpolate
|
||||
from scipy.interpolate import interp1d
|
||||
|
||||
#################################################
|
||||
#SET PARAMETERS HERE
|
||||
|
@ -2659,5 +2663,3 @@ def runIon(self):
|
|||
#esd_noion(self, ionParam)
|
||||
|
||||
return
|
||||
|
||||
|
|
@ -3,7 +3,6 @@
|
|||
# Copyright 2016
|
||||
#
|
||||
|
||||
from scipy.ndimage.filters import median_filter
|
||||
import numpy as np
|
||||
import isce
|
||||
import isceobj
|
||||
|
@ -20,6 +19,8 @@ def runOffsetFilter(self):
|
|||
if not self.doDenseOffsets:
|
||||
return
|
||||
|
||||
from scipy.ndimage.filters import median_filter
|
||||
|
||||
offsetfile = os.path.join(self._insar.mergedDirname, self._insar.offsetfile)
|
||||
snrfile = os.path.join(self._insar.mergedDirname, self._insar.snrfile)
|
||||
print('\n======================================')
|
||||
|
|
|
@ -8,7 +8,6 @@ import numpy as np
|
|||
import os
|
||||
import isceobj
|
||||
import logging
|
||||
import scipy.signal as SS
|
||||
from isceobj.Util.ImageUtil import ImageLib as IML
|
||||
import datetime
|
||||
import pprint
|
||||
|
@ -177,6 +176,7 @@ def createCoherence(intfile, win=5):
|
|||
'''
|
||||
Compute coherence using scipy convolve 2D.
|
||||
'''
|
||||
import scipy.signal as SS
|
||||
|
||||
corfile = os.path.splitext(intfile)[0] + '.cor'
|
||||
filt = np.ones((win,win))/ (1.0*win*win)
|
||||
|
|
Loading…
Reference in New Issue