clean up and update grossOffsets

LT1AB
Minyan Zhong 2020-11-30 00:49:28 -08:00
parent f44a0edf1d
commit c399d3fa03
3 changed files with 407 additions and 691 deletions

View File

@ -0,0 +1,407 @@
#!/usr/bin/env python3
# Generate pixel offsets based on Antarctica velocity model (MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 doi:https://doi.org/10.5067/D7GK8F5J8M8R)
# Author: Minyan Zhong
import os
import argparse
import isce
import isceobj
import gdal
import pyproj
import numpy as np
import matplotlib.pyplot as plt
EXAMPLE = '''
grossOffsets.py --model_file antarctica_ice_velocity_450m_v2.nc --lon lon.rdr --lat lat.rdr --los los.rdr --los_scheme bil --ww 64 --wh 64 --sw 10 --sh 10 --mm 50 --kw 32 --kh 32 --startpixeldw 50 --startpixelac 50 --rangePixelSize 0.930 --azimuthPixelSize 2.286 --interval 1
'''
def createParser():
'''
Command line parser.
'''
parser = argparse.ArgumentParser(description='Generate pixel offsets (integer pixel) based on Antarctica ice velocity model (MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 doi:https://doi.org/10.5067/D7GK8F5J8M8R)', formatter_class=argparse.RawTextHelpFormatter, epilog=EXAMPLE)
# path to antarctica velocity model
parser.add_argument('--model_file', type=str, dest='model_file', required=True)
# lat, lon, los
parser.add_argument('--lat', type=str, dest='lat', required=True,
help='latitude file')
parser.add_argument('--lon', type=str, dest='lon', required=True,
help='longitude fie')
parser.add_argument('--los', type=str, dest='los', required=True,
help='two bands raster data in float. band1: incidence angle; bands: satellite flight direction (ISCE2 convention)')
parser.add_argument('--los_scheme', type=str, dest='los_scheme', required=True,
help='interleave scheme of los (bil, bsq or bip)')
# window size settings
parser.add_argument('--ww', type=int, dest='winwidth', default=64,
help='Window width (default: %(default)s).')
parser.add_argument('--wh', type=int, dest='winhgt', default=64,
help='Window height (default: %(default)s).')
parser.add_argument('--sw', type=int, dest='srcwidth', default=20,
help='Half search range along width, (default: %(default)s, recommend: 4-32).')
parser.add_argument('--sh', type=int, dest='srchgt', default=20,
help='Half search range along height (default: %(default)s, recommend: 4-32).')
parser.add_argument('--kw', type=int, dest='skipwidth', default=64,
help='Skip across (default: %(default)s).')
parser.add_argument('--kh', type=int, dest='skiphgt', default=64,
help='Skip down (default: %(default)s).')
# determine the number of windows
# either specify the starting pixel and the number of windows,
# or by setting them to -1, let the script to compute these parameters
parser.add_argument('--mm', type=int, dest='margin', default=0,
help='Margin (default: %(default)s).')
parser.add_argument('--spa','--startpixelac', dest='startpixelac', type=int, default=-1, help='Starting Pixel across of the reference image(default: %(default)s to be determined by margin and search range).')
parser.add_argument('--spd','--startpixeldw', dest='startpixeldw', type=int, default=-1, help='Starting Pixel down of the reference image (default: %(default)s).')
parser.add_argument('--aps', '--azimuthPixelSize', dest='azimuthPixelSize', type=float, required=True, help='azimuth pixel size')
parser.add_argument('--rps', '--rangePixelSize', dest='rangePixelSize', type=float, required=True, help='range pixel size')
parser.add_argument('--interval', dest='interval', type=float, required=True, help='interval between reference and secondary scene (unit: day)')
parser.add_argument('--outdir', dest='outdir', type=str, default='.', help='output directory')
parser.add_argument('--outname', dest='outname', type=str, default='grossOffsets.bin', help='output name of gross pixel offsets (integer)')
return parser
def cmdLineParse(iargs = None):
parser = createParser()
inps = parser.parse_args(args=iargs)
return inps
class grossOffsets:
def __init__(self, inps):
model_path = inps.model_file
self.model_file = model_path
self.latfile = inps.lat
self.lonfile = inps.lon
self.losfile = inps.los
ds = gdal.Open(self.losfile)
self.XSize = ds.RasterXSize
self.YSize = ds.RasterYSize
ds = None
self.los_scheme = inps.los_scheme.lower()
assert(self.los_scheme in ['bil','bsq', 'bip']), print('interleave scheme of los')
self.margin = inps.margin
self.winSizeHgt = inps.winhgt
self.winSizeWidth = inps.winwidth
self.searchSizeHgt = inps.srchgt
self.searchSizeWidth = inps.srcwidth
self.skipSizeHgt = inps.skiphgt
self.skipSizeWidth = inps.skipwidth
self.startpixelac = inps.startpixelac if inps.startpixelac != -1 else self.margin + self.searchSizeWidth
self.startpixeldw = inps.startpixeldw if inps.startpixeldw != -1 else self.margin + self.searchSizeHgt
self.azPixelSize = inps.azimuthPixelSize
self.rngPixelSize = inps.rangePixelSize
self.interval = inps.interval
self.outdir = inps.outdir
self.outname = inps.outname
self.get_veloData()
self.vProj = pyproj.Proj('+init=EPSG:3031')
def get_veloData(self):
assert os.path.exists(self.model_file), print("Please download MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2 at https://nsidc.org/data/NSIDC-0484/versions")
data_read = 0
ds = gdal.Open("NETCDF:{0}:{1}".format(self.model_file, 'VX'))
self.vx = ds.ReadAsArray()
ds = gdal.Open("NETCDF:{0}:{1}".format(self.model_file, 'VY'))
self.vy = ds.ReadAsArray()
self.vx = np.flipud(self.vx)
self.vy = np.flipud(self.vy)
self.v = np.sqrt(np.multiply(self.vx,self.vx)+np.multiply(self.vy,self.vy))
self.model_spacing = 450
self.x0 = np.arange(-2800000,2800000,step=450)
self.y0 = np.arange(-2800000,2800000,step=450)+200
def runGrossOffsets(self):
## Step 0: Set up projection transformers for ease of use
self.llhProj = pyproj.Proj('+init=EPSG:4326')
self.xyzProj = pyproj.Proj('+init=EPSG:4978')
# From xy to lat lon.
refPt = self.vProj(0.0, 0.0, inverse=True)
### Step 2: Cut the data
print('Extract the data to this radar scene...')
# The following code is to be consistent with "get_offset_geometry" in dense_offset.py
numWinDown = (self.YSize - self.margin*2 - self.searchSizeHgt*2 - self.winSizeHgt) // self.skipSizeHgt
numWinAcross = (self.XSize - self.margin*2 - self.searchSizeWidth*2 - self.winSizeWidth) // self.skipSizeWidth
lat = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float64)
lon = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float64)
inc = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float32)
azi = np.zeros(shape=(numWinDown,numWinAcross),dtype=np.float32)
self.centerOffsetHgt = self.winSizeHgt//2-1
self.centerOffsetWidth = self.winSizeWidth//2-1
print("Number of winows in down direction, Number of window in across direction: ")
print(numWinDown, numWinAcross)
cut_vx = np.zeros(shape=(numWinDown,numWinAcross))
cut_vy = np.zeros(shape=(numWinDown,numWinAcross))
cut_v = np.zeros(shape=(numWinDown,numWinAcross))
pixel = np.zeros(shape=(numWinDown,numWinAcross))
line = np.zeros(shape=(numWinDown,numWinAcross))
for iwin in range(numWinDown):
# Need to calculate lat lon in the interior mode.
print('Processing line: ',iwin, 'out of', numWinDown)
down = self.margin + self.skipSizeHgt * iwin + self.centerOffsetHgt
off = down*self.XSize
across_indices = self.margin + np.arange(numWinAcross)*self.skipSizeWidth + self.centerOffsetWidth
# latitude
latline = np.memmap(filename=self.latfile,dtype='float64',offset=8*off,shape=(self.XSize))
# longitude
lonline = np.memmap(filename=self.lonfile,dtype='float64',offset=8*off,shape=(self.XSize))
# incidence angle and satellite flight direction
# bil
if self.los_scheme == "bil":
off2 = down * self.XSize * 2
losline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize*2))
incline = losline[0:self.XSize]
aziline = losline[self.XSize:self.XSize*2]
# bsq
elif self.los_scheme == 'bsq':
off2 = self.YSize * self.XSize + down * self.XSize
incline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off,shape=(self.XSize))
aziline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize))
# bip
else:
off2 = down * self.XSize * 2
losline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize*2))
incline = losline[0:self.XSize*2:2]
aziline = losline[1:self.XSize*2:2]
# Subset the line
lat[iwin,:] = latline[across_indices]
lon[iwin,:] = lonline[across_indices]
inc[iwin,:] = incline[across_indices]
azi[iwin,:] = aziline[across_indices]
#print(iwin,'lat: ',lat[iwin,:])
#print(iwin,'lon: ',lon[iwin,:])
#print(iwin,'inc: ',inc[iwin,:])
#print(iwin,'azi: ',azi[iwin,:])
#### Look up in MEaSUREs InSAR-Based Antarctica Ice Velocity Map
# Convert lat lon to grid coordinates in polar stereographic projection.
xyMap = pyproj.transform(self.llhProj, self.vProj, lon[iwin,:], lat[iwin,:])
# Extract the values in the velocity model.
model_spacing = self.model_spacing
pixel[iwin,:] = np.clip((xyMap[0]-self.x0[0])/model_spacing, 0, self.vx.shape[1]-1)
line[iwin,:] = np.clip((xyMap[1]-self.y0[0])/model_spacing, 0, self.vx.shape[0]-1)
pixel_int = pixel[iwin,:].astype(int)
line_int = line[iwin,:].astype(int)
cut_vx[iwin,:] = self.vx[line_int,pixel_int]
cut_vy[iwin,:] = self.vy[line_int,pixel_int]
cut_v = np.sqrt(np.multiply(cut_vx,cut_vx),np.multiply(cut_vy,cut_vy))
valid = np.logical_and(inc!=0, cut_v!=0)
### Mask out invalid values ###
# 1. Mask out invalid values at margin.
cut_vx[inc==0] = np.nan
cut_vy[inc==0] = np.nan
# Get Interpolated speed.
cut_v = np.sqrt(np.multiply(cut_vx,cut_vx),np.multiply(cut_vy,cut_vy))
print("The speed matrix")
print(cut_v)
print("The shape of speed matrix")
print(cut_v.shape)
### Step 3: Convert XY velocity to EN velocity (clockwise rotation)
print('Coverting XY to EN...')
lonr = np.radians(lon - refPt[0])
cut_ve = np.multiply(cut_vx, np.cos(lonr)) - np.multiply(cut_vy, np.sin(lonr))
cut_vn = np.multiply(cut_vy, np.cos(lonr)) + np.multiply(cut_vx, np.sin(lonr))
print('Polar stereographic velocity: ', [cut_vx, cut_vy])
print('Local ENU velocity: ', [cut_ve, cut_vn])
####Step 4: Convert EN velocity to rng and azimuth
#Local los and azi vector in ENU coordinate
print(' Coverting EN to rdr...')
incr = np.radians(inc)
azir = np.radians(azi)
losr = np.radians(azi-90.0)
losenu=[ np.multiply(np.sin(incr),np.cos(losr)),
np.multiply(np.sin(incr),np.sin(losr)),
-np.cos(incr) ]
azienu=[ np.cos(azir),
np.sin(azir),
0.0 ]
# unit: pixel per day
grossRangeOffset = (self.interval/365.25) * (cut_ve * losenu[0] + cut_vn * losenu[1])/ self.rngPixelSize
grossAzimuthOffset = (self.interval/365.25) * (cut_ve * azienu[0] + cut_vn * azienu[1]) / self.azPixelSize
# Mask out invalid values at margin.
grossRangeOffset[inc==0] = np.nan
grossAzimuthOffset[inc==0] = np.nan
print('Gross azimuth offset: ', grossAzimuthOffset)
print('Gross range offset: ', grossRangeOffset)
print('Shape of gross offsets: ', grossRangeOffset.shape)
### Show FLOAT results ###
fig=plt.figure(21,figsize=(9,9))
ax = fig.add_subplot(121)
ax.set_title('gross azimuth offset',fontsize=15)
cax = ax.imshow(grossAzimuthOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
ax = fig.add_subplot(122)
ax.set_title('gross range offset',fontsize=15)
cax = ax.imshow(grossRangeOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
figname = os.path.join(self.outdir,'pixel_offsets.png')
fig.savefig(figname,format='png')
plt.close()
# Save grossRangeOffset and grossAzimuthOffset as ISCE supported images.
# Range
rangeFileName = os.path.join(self.outdir, 'grossRange.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(rangeFileName, xsize=grossRangeOffset.shape[1], ysize=grossRangeOffset.shape[0], bands=1, eType=gdal.GDT_Float32)
dst_ds.GetRasterBand(1).WriteArray(grossRangeOffset,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('FLOAT')
outImage.setFilename(rangeFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossRangeOffset.shape[0])
outImage.setWidth(grossRangeOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Azimuth
azimuthFileName = os.path.join(self.outdir, 'grossAzimuth.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(azimuthFileName, xsize=grossAzimuthOffset.shape[1], ysize=grossAzimuthOffset.shape[0], bands=1, eType=gdal.GDT_Float32)
dst_ds.GetRasterBand(1).WriteArray(grossAzimuthOffset,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('FLOAT')
outImage.setFilename(azimuthFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossAzimuthOffset.shape[0])
outImage.setWidth(grossAzimuthOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
### Round to integer ###
grossAzimuthOffset_int = np.rint(grossAzimuthOffset).astype(np.int32)
grossRangeOffset_int = np.rint(grossRangeOffset).astype(np.int32)
### Show Integer results ###
fig=plt.figure(22,figsize=(9,9))
ax = fig.add_subplot(121)
ax.set_title('gross azimuth offset (int)',fontsize=15)
cax = ax.imshow(grossAzimuthOffset_int,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
ax = fig.add_subplot(122)
ax.set_title('gross range offset (int)',fontsize=15)
cax = ax.imshow(grossRangeOffset_int,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,shrink=0.8)
cbar.set_label("pixel",fontsize=15)
figname = os.path.join(self.outdir,'pixel_offsets_int.png')
fig.savefig(figname,format='png')
plt.close()
# Save grossRangeOffset and grossAzimuthOffset as ISCE supported images.
# Range
rangeFileName = os.path.join(self.outdir, 'grossRange_int.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(rangeFileName, xsize=grossRangeOffset.shape[1], ysize=grossRangeOffset.shape[0], bands=1, eType=gdal.GDT_Int32)
dst_ds.GetRasterBand(1).WriteArray(grossRangeOffset_int,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('INT')
outImage.setFilename(rangeFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossRangeOffset.shape[0])
outImage.setWidth(grossRangeOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Azimuth
azimuthFileName = os.path.join(self.outdir, 'grossAzimuth_int.off')
driver = gdal.GetDriverByName('ENVI')
dst_ds = driver.Create(azimuthFileName, xsize=grossAzimuthOffset.shape[1], ysize=grossAzimuthOffset.shape[0], bands=1, eType=gdal.GDT_Int32)
dst_ds.GetRasterBand(1).WriteArray(grossAzimuthOffset_int,0,0)
dst_ds = None
outImage = isceobj.createImage()
outImage.setDataType('INT')
outImage.setFilename(azimuthFileName)
outImage.setBands(1)
outImage.scheme='BIL'
outImage.setLength(grossAzimuthOffset.shape[0])
outImage.setWidth(grossAzimuthOffset.shape[1])
outImage.setAccessMode('read')
outImage.renderHdr()
# Round to integer and write to raw binary file
numTotal = numWinDown * numWinAcross
grossOffsets_int = np.hstack((grossAzimuthOffset_int.reshape(numTotal,1), grossRangeOffset_int.reshape(numTotal,1)))
print("grossOffsets: \n", grossOffsets_int, grossOffsets_int.dtype)
grossOffsets_int.tofile(os.path.join(self.outdir, self.outname))
return 0
def main(iargs=None):
inps = cmdLineParse(iargs)
grossObj = grossOffsets(inps)
grossObj.runGrossOffsets()
if __name__=='__main__':
main()

View File

@ -1,312 +0,0 @@
#!/usr/bin/env python3
# author: Minyan Zhong
import numpy as np
import argparse
import os
import isce
import isceobj
import shelve
import datetime
from isceobj.Location.Offset import OffsetField
from iscesys.StdOEL.StdOELPy import create_writer
#from mroipac.ampcor.DenseAmpcor import DenseAmpcor
from contrib.PyCuAmpcor import PyCuAmpcor
from grossOffsets import grossOffsets
#from isceobj.Utils.denseoffsets import denseoffsets
from isceobj.Util.decorators import use_api
from pprint import pprint
def createParser():
'''
Command line parser.
'''
parser = argparse.ArgumentParser( description='Generate offset field between two Sentinel slc')
parser.add_argument('-m','--reference', type=str, dest='reference', required=True,
help='Reference image')
parser.add_argument('-s', '--secondary',type=str, dest='secondary', required=True,
help='Secondary image')
parser.add_argument('-l', '--lat',type=str, dest='lat', required=False,
help='Latitude')
parser.add_argument('-L', '--lon',type=str, dest='lon', required=False,
help='Longitude')
parser.add_argument('--los',type=str, dest='los', required=False,
help='Line of Sight')
parser.add_argument('--referencexml',type=str, dest='referencexml', required=False,
help='Reference Image Xml File')
parser.add_argument('--ww', type=int, dest='winwidth', default=64,
help='Window Width')
parser.add_argument('--wh', type=int, dest='winhgt', default=64,
help='Window height')
parser.add_argument('--sw', type=int, dest='srcwidth', default=20,
help='Search window width')
parser.add_argument('--sh', type=int, dest='srchgt', default=20,
help='Search window height')
parser.add_argument('--mm', type=int, dest='margin', default=50,
help='Margin')
parser.add_argument('--kw', type=int, dest='skipwidth', default=64,
help='Skip across')
parser.add_argument('--kh', type=int, dest='skiphgt', default=64,
help='Skip down')
parser.add_argument('--nwa', type=int, dest='numWinAcross', default=-1,
help='Number of Window Across')
parser.add_argument('--nwd', type=int, dest='numWinDown', default=-1,
help='Number of Window Down')
parser.add_argument('-op','--outprefix', type=str, dest='outprefix', default='dense_ampcor',
help='Output prefix')
parser.add_argument('-os','--outsuffix', type=str, dest='outsuffix', default='dense_ampcor',
help='Output suffix')
parser.add_argument('-g','--gross', type=int, dest='gross', default=0,
help='Use gross offset or not')
parser.add_argument('--aa', type=int, dest='azshift', default=0,
help='Gross azimuth offset')
parser.add_argument('--rr', type=int, dest='rgshift', default=0,
help='Gross range offset')
parser.add_argument('--oo', type=int, dest='oversample', default=32,
help = 'Oversampling factor')
parser.add_argument('-r', '--redo', dest='redo', type=int, default=0
, help='To redo or not')
parser.add_argument('-drmp', '--deramp', dest='deramp', type=int, default=0
, help='deramp method (0: mag, 1: complex)')
parser.add_argument('-gid', '--gpuid', dest='gpuid', type=int, default=-1
, help='GPU ID')
return parser
def cmdLineParse(iargs = None):
parser = createParser()
inps = parser.parse_args(args=iargs)
return inps
@use_api
def estimateOffsetField(reference, secondary, inps=None):
###Loading the secondary image object
sim = isceobj.createSlcImage()
sim.load(secondary+'.xml')
sim.setAccessMode('READ')
sim.createImage()
###Loading the reference image object
sar = isceobj.createSlcImage()
sar.load(reference + '.xml')
sar.setAccessMode('READ')
sar.createImage()
width = sar.getWidth()
length = sar.getLength()
objOffset = PyCuAmpcor.PyCuAmpcor()
objOffset.algorithm = 0
objOffset.deviceID = inps.gpuid # -1:let system find the best GPU
objOffset.nStreams = 2 #cudaStreams
objOffset.derampMethod = inps.deramp
print(objOffset.derampMethod)
objOffset.referenceImageName = reference + '.vrt'
objOffset.referenceImageHeight = length
objOffset.referenceImageWidth = width
objOffset.secondaryImageName = secondary + '.vrt'
objOffset.secondaryImageHeight = length
objOffset.secondaryImageWidth = width
print("image length:",length)
print("image width:",width)
objOffset.numberWindowDown = (length-2*inps.margin-2*inps.srchgt-inps.winhgt)//inps.skiphgt
objOffset.numberWindowAcross = (width-2*inps.margin-2*inps.srcwidth-inps.winwidth)//inps.skipwidth
if (inps.numWinDown != -1):
objOffset.numberWindowDown = inps.numWinDown
if (inps.numWinAcross != -1):
objOffset.numberWindowAcross = inps.numWinAcross
print("nlines: ",objOffset.numberWindowDown)
print("ncolumns: ",objOffset.numberWindowAcross)
# window size
objOffset.windowSizeHeight = inps.winhgt
objOffset.windowSizeWidth = inps.winwidth
print(objOffset.windowSizeHeight)
print(objOffset.windowSizeWidth)
# search range
objOffset.halfSearchRangeDown = inps.srchgt
objOffset.halfSearchRangeAcross = inps.srcwidth
print(inps.srchgt,inps.srcwidth)
# starting pixel
objOffset.referenceStartPixelDownStatic = inps.margin
objOffset.referenceStartPixelAcrossStatic = inps.margin
# skip size
objOffset.skipSampleDown = inps.skiphgt
objOffset.skipSampleAcross = inps.skipwidth
# oversampling
objOffset.corrSufaceOverSamplingMethod = 0
objOffset.corrSurfaceOverSamplingFactor = inps.oversample
#objOffset.rawDataOversamplingFactor = 4
# output filenames
objOffset.offsetImageName = str(inps.outprefix) + str(inps.outsuffix) + '.bip'
objOffset.grossOffsetImageName = str(inps.outprefix) + str(inps.outsuffix) + '_gross.bip'
objOffset.snrImageName = str(inps.outprefix) + str(inps.outsuffix) + '_snr.bip'
print("offsetfield: ",objOffset.offsetImageName)
print("gross offsetfield: ",objOffset.grossOffsetImageName)
print("snr: ",objOffset.snrImageName)
offsetImageName = objOffset.offsetImageName.decode('utf8')
#print(type(offsetImageName))
#print(offsetImageName)
#print(type(objOffset.numberWindowAcross))
grossOffsetImageName = objOffset.grossOffsetImageName.decode('utf8')
snrImageName = objOffset.snrImageName.decode('utf8')
print(offsetImageName)
print(inps.redo)
if os.path.exists(offsetImageName) and inps.redo==0:
print('offsetfield file exists')
else:
# generic control
objOffset.numberWindowDownInChunk = 5
objOffset.numberWindowAcrossInChunk = 5
objOffset.mmapSize = 16
objOffset.setupParams()
## Set Gross Offset ###
if inps.gross == 0:
objOffset.setConstantGrossOffset(0, 0)
else:
print("Setting up grossOffset...")
objGrossOff = grossOffsets()
objGrossOff.setXSize(width)
objGrossOff.setYize(length)
objGrossOff.setMargin(inps.margin)
objGrossOff.setWinSizeHgt(inps.winhgt)
objGrossOff.setWinSizeWidth(inps.winwidth)
objGrossOff.setSearchSizeHgt(inps.srchgt)
objGrossOff.setSearchSizeWidth(inps.srcwidth)
objGrossOff.setSkipSizeHgt(inps.skiphgt)
objGrossOff.setSkipSizeWidth(inps.skipwidth)
objGrossOff.setLatFile(inps.lat)
objGrossOff.setLonFile(inps.lon)
objGrossOff.setLosFile(inps.los)
objGrossOff.setReferenceFile(inps.referencexml)
objGrossOff.setbTemp(inps.bTemp)
grossDown, grossAcross = objGrossOff.runGrossOffsets()
# change nan to 0
grossDown = np.nan_to_num(grossDown)
grossAcross = np.nan_to_num(grossAcross)
print("Before plotting the gross offsets (min and max): ", np.nanmin(grossDown),np.nanmax(grossDown))
print("Before plotting the gross offsets (min and max): ", np.rint(np.nanmin(grossDown)),np.rint(np.nanmax(grossDown)))
grossDown = np.int32(np.rint(grossDown.ravel()))
grossAcross = np.int32(np.rint(grossAcross.ravel()))
print(np.amin(grossDown), np.amax(grossDown))
print(np.amin(grossAcross), np.amax(grossAcross))
print(grossDown.shape)
print(grossDown.shape)
objOffset.setVaryingGrossOffset(grossDown, grossAcross)
#objOffset.setVaryingGrossOffset(np.zeros(shape=grossDown.shape,dtype=np.int32), np.zeros(shape=grossAcross.shape,dtype=np.int32))
# check
objOffset.checkPixelInImageRange()
# Run the code
print('Running PyCuAmpcor')
objOffset.runAmpcor()
print('Finished')
sar.finalizeImage()
sim.finalizeImage()
# Finalize the results
# offsetfield
outImg = isceobj.createImage()
outImg.setDataType('FLOAT')
outImg.setFilename(offsetImageName)
outImg.setBands(2)
outImg.scheme = 'BIP'
outImg.setWidth(objOffset.numberWindowAcross)
outImg.setLength(objOffset.numberWindowDown)
outImg.setAccessMode('read')
outImg.renderHdr()
# gross offsetfield
outImg = isceobj.createImage()
outImg.setDataType('FLOAT')
outImg.setFilename(grossOffsetImageName)
outImg.setBands(2)
outImg.scheme = 'BIP'
outImg.setWidth(objOffset.numberWindowAcross)
outImg.setLength(objOffset.numberWindowDown)
outImg.setAccessMode('read')
outImg.renderHdr()
# snr
snrImg = isceobj.createImage()
snrImg.setFilename(snrImageName)
snrImg.setDataType('FLOAT')
snrImg.setBands(1)
snrImg.setWidth(objOffset.numberWindowAcross)
snrImg.setLength(objOffset.numberWindowDown)
snrImg.setAccessMode('read')
snrImg.renderHdr()
return objOffset
def main(iargs=None):
inps = cmdLineParse(iargs)
outDir = os.path.dirname(inps.outprefix)
print(inps.outprefix)
os.makedirs(outDir, exist_ok=True)
objOffset = estimateOffsetField(inps.reference, inps.secondary, inps)
if __name__ == '__main__':
main()

View File

@ -1,379 +0,0 @@
#!/usr/bin/env python3
# Generate grossOffsets (pixel) based on velocity field
# Author: Minyan Zhong
import numpy as np
import pyproj
import subprocess
import isce
import isceobj
from iscesys.Component.ProductManager import ProductManager as PM
import numpy as np
from netCDF4 import Dataset
#from mpl_toolkits.basemap import Basemap
import gdal
from scipy.interpolate import interp2d, griddata
import matplotlib.pyplot as plt
class grossOffsets:
def __init__(self):
self.nfig = 1
self.figsize = (10,10)
## Antarctica Velocity File
self.vel_file = '/net/jokull/nobak/mzzhong/Ant_Plot/Data/antarctica_ice_velocity_900m.nc'
self.vProj = pyproj.Proj('+init=EPSG:3031')
def setMode(self,mode):
if mode == 'interior' or mode == 'exterior':
self.mode = mode
else:
raise Exception('Wrong gross offset mode')
def setLatFile(self,val):
self.latfile = val
def setLonFile(self,val):
self.lonfile = val
def setLosFile(self,val):
self.losfile = val
def setXSize(self,val):
self.XSize = val
def setYize(self,val):
self.YSize = val
def setMargin(self,val):
self.margin = val
def setWinSizeHgt(self,val):
self.winSizeHgt = val
def setWinSizeWidth(self,val):
self.winSizeWidth = val
def setSearchSizeHgt(self,val):
self.searchSizeHgt = val
def setSearchSizeWidth(self,val):
self.searchSizeWidth = val
def setSkipSizeHgt(self,val):
self.skipSizeHgt = val
def setSkipSizeWidth(self,val):
self.skipSizeWidth = val
# exterior mode
def setOffsetLat(self,lat):
self.lat = lat
def setOffsetLon(self,lon):
self.lon = lon
def setOffsetInc(self,inc):
self.inc = inc
def setOffsetAzi(self,azi):
self.azi = azi
def setNumWinDown(self,numWinDown):
self.numWinDown = numWinDown
def setNumWinAcross(self,numWinAcross):
self.numWinAcross = numWinAcross
def setbTemp(self,val):
self.bTemp = val
def setPixelSize(self,azPixelSize,rngPixelSize):
self.azPixelSize = azPixelSize
self.rngPixelSize = rngPixelSize
def get_veloData(self):
print("getting velocity data...")
fh=Dataset(self.vel_file,mode='r')
self.vx = fh.variables['vx'][:]
self.vy = fh.variables['vy'][:]
self.vx = np.flipud(self.vx)
self.vy = np.flipud(self.vy)
self.v = np.sqrt(np.multiply(self.vx,self.vx)+np.multiply(self.vy,self.vy))
print(self.v.shape)
self.x0 = np.arange(-2800000,2800000,step=900)
self.y0 = np.arange(-2800000,2800000,step=900)+200
#x,y = np.meshgrid(self.x0,self.y0)
#from mpl_toolkits.basemap import Basemap
#self.AntVeloDataMap = Basemap(width=5600000,height=5600000,\
# resolution='l',projection='stere',\
# lat_ts=-71,lat_0=-90,lon_0=0)
#self.vel_lon, self.vel_lat= self.vProj(x,y,inverse="true")
def runGrossOffsets(self):
###Pieces of information needed
###These pieces of information come from the output of "topo" module from ISCE
### llh - size(3) - lat,lon,hgt of pixel under consideration
### los - size(2) - inc, azi LOS angles
###These pieces of information come from an external velocity product, e.g from NSIDC
### vx - scalar - Velocity in x direction at pixel under consideration
### vy - scalar - Velocity in y direction at pixel under consideration
### vproj - string - Projection system of the velocity field
### - EPSG:3031 for Antarctica
### - EPSG:3413 for Greenland
#### The equations below describe the operations needed for a single pixel
#### I will use Greenland as an example. Easy to change for Antarctica by changing the coordinate system.
### Step 0: Set up projection transformers for ease of use
self.llhProj = pyproj.Proj('+init=EPSG:4326') ##Standard lat,lon, hgt
self.xyzProj = pyproj.Proj('+init=EPSG:4978') ##Standard xyz (ECEF)
refPt = self.vProj(0.0, 0.0, inverse=True)
print(refPt)
### Step 1: Set up radar image information
azPixelSize = self.azPixelSize
rngPixelSize = self.rngPixelSize
### Step 2: Cut the data
print('Obtain the velocity data...')
self.get_veloData()
print('Extract the data to this radar scene...')
if self.mode == 'interior':
numWinDown = (self.YSize - self.margin*2 - self.searchSizeHgt*2 - self.winSizeHgt) // self.skipSizeHgt
numWinAcross = (self.XSize - self.margin*2 - self.searchSizeWidth*2 - self.winSizeWidth) // self.skipSizeWidth
lat = np.zeros(shape=(numWinDown,numWinAcross))
lon = np.zeros(shape=(numWinDown,numWinAcross))
inc = np.zeros(shape=(numWinDown,numWinAcross))
azi = np.zeros(shape=(numWinDown,numWinAcross))
self.centerOffsetHgt = self.searchSizeHgt+self.skipSizeHgt//2-1
self.centerOffsetWidth = self.searchSizeWidth+self.skipSizeWidth//2-1
elif self.mode == 'exterior':
numWinDown = self.numWinDown
numWinAcross = self.numWinAcross
lat = self.lat
lon = self.lon
inc = self.inc
azi = self.azi
print(numWinDown)
print(numWinAcross)
cut_vx = np.zeros(shape=(numWinDown,numWinAcross))
cut_vy = np.zeros(shape=(numWinDown,numWinAcross))
cut_v = np.zeros(shape=(numWinDown,numWinAcross))
pixel = np.zeros(shape=(numWinDown,numWinAcross))
line = np.zeros(shape=(numWinDown,numWinAcross))
for iwin in range(numWinDown):
if self.mode == 'interior':
print('Processing line: ',iwin)
down = self.margin + self.skipSizeHgt * iwin + self.centerOffsetHgt
off = down*self.XSize
# Warning: depend on the ENVI format. This is for BSQ
off2 = self.YSize * self.XSize + down*self.XSize
start = self.margin + self.centerOffsetWidth
end = self.margin + self.skipSizeWidth * numWinAcross
latline = np.memmap(filename=self.latfile,dtype='float64',offset=8*off,shape=(self.XSize))
lonline = np.memmap(filename=self.lonfile,dtype='float64',offset=8*off,shape=(self.XSize))
incline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off,shape=(self.XSize))
aziline = np.memmap(filename=self.losfile,dtype='float32',offset=4*off2,shape=(self.XSize))
lat[iwin,:] = latline[start:end:self.skipSizeWidth]
lon[iwin,:] = lonline[start:end:self.skipSizeWidth]
inc[iwin,:] = incline[start:end:self.skipSizeWidth]
azi[iwin,:] = aziline[start:end:self.skipSizeWidth]
#print(iwin,': ',lon[iwin,:])
#print(iwin,': ',lat[iwin,:])
#print(iwin,': ',inc[iwin,:])
#print(iwin,': ',azi[iwin,:])
#### Look up in MEaSUREs InSAR-Based Antarctica Ice Velocity Map
xyMap = pyproj.transform(self.llhProj, self.vProj, lon[iwin,:], lat[iwin,:])
#xyMap = self.vProj(lon[iwin,:],lat[iwin,:])
pixel[iwin,:] = np.clip((xyMap[0]-self.x0[0])/900, 0, self.vx.shape[1]-1)
line[iwin,:] = np.clip((xyMap[1]-self.y0[0])/900, 0, self.vx.shape[0]-1)
pixel_int = pixel[iwin,:].astype(int)
line_int = line[iwin,:].astype(int)
# For Debug
#print(iwin,': ', 'location: ', xyMap[0],xyMap[1])
#print(iwin,': ', 'location: ', lon[iwin,:],lat[iwin,:])
cut_vx[iwin,:] = self.vx[line_int,pixel_int]
cut_vy[iwin,:] = self.vy[line_int,pixel_int]
cut_v[iwin,:] = np.sqrt(np.multiply(cut_vx[iwin,:],cut_vx[iwin,:]),np.multiply(cut_vy[iwin,:],cut_vy[iwin,:]))
## Interpolate offsetfield
# Mask out invalid value based on the value of lat (or lon) (only work for polar region)
# Mask out zero velocity
print('Interpolating velocity field...')
valid = np.logical_and(lat!=0,cut_v!=0)
x0=np.arange(numWinAcross)
y0=np.arange(numWinDown)
xx,yy=np.meshgrid(x0,y0)
grid_x,grid_y=[grid.ravel() for grid in np.meshgrid(x0,y0)]
points = np.column_stack((xx[valid],yy[valid]))
print(points.shape)
in_dat = cut_vx[valid]
cut_vx_new = griddata(points, in_dat, (grid_x, grid_y), method='linear')
in_dat = cut_vy[valid]
cut_vy_new = griddata(points, in_dat, (grid_x, grid_y), method='linear')
cut_vx_new = cut_vx_new.reshape(numWinDown,numWinAcross)
cut_vy_new = cut_vy_new.reshape(numWinDown,numWinAcross)
# mask out invalid values at margin
cut_vx_new[lat==0] = np.nan
cut_vy_new[lat==0] = np.nan
cut_v_new = np.sqrt(np.multiply(cut_vx_new,cut_vx_new),np.multiply(cut_vy_new,cut_vy_new))
print(cut_v_new)
print(cut_v_new.shape)
##########
#fig=plt.figure(10,figsize=(10,10))
#ax = fig.add_subplot(111)
#print(cut_v.shape)
#ax.imshow(np.clip(cut_v_new,0,1000),cmap=plt.cm.viridis)
#fig.savefig('10.png',format='png')
### Step 3: Convert XY velocity to EN velocity (clockwise rotation)
print('Coverting XY to EN...')
lonr = np.radians(lon - refPt[0])
cut_ve = np.multiply(cut_vx_new, np.cos(lonr)) - np.multiply(cut_vy_new, np.sin(lonr))
cut_vn = np.multiply(cut_vy_new, np.cos(lonr)) + np.multiply(cut_vx_new, np.sin(lonr))
print('Polar stereographic velocity: ', [cut_vx, cut_vy])
print('Local ENU velocity: ', [cut_ve, cut_vn])
####Step 4: Convert EN velocity to rng and azimuth
#Local los and azi vector in ENU coordinate
print(' Coverting EN to rdr...')
incr = np.radians(inc)
azir = np.radians(azi)
losr = np.radians(azi-90.0)
losenu=[ np.multiply(np.sin(incr),np.cos(losr)),
np.multiply(np.sin(incr),np.sin(losr)),
-np.cos(incr) ]
azienu=[ np.cos(azir),
np.sin(azir),
0.0 ]
grossRangeOffset = (self.bTemp/365.25) * (cut_ve * losenu[0] + cut_vn * losenu[1])/ rngPixelSize
grossAzimuthOffset = (self.bTemp/365.25) * (cut_ve * azienu[0] + cut_vn * azienu[1]) / azPixelSize
print('Gross azimuth offset: ', grossAzimuthOffset)
print('Gross range offset: ', grossRangeOffset)
# Float
fig=plt.figure(21,figsize=(16,9))
#ax = fig.add_subplot(121)
ax = fig.add_axes([0.05,0.05,0.4,0.9])
ax.set_title('gross azimuth offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(grossAzimuthOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#ax = fig.add_subplot(122)
ax = fig.add_axes([0.55,0.05,0.4,0.9])
ax.set_title('gross range offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(grossRangeOffset,cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossRangeOffset)),np.rint(np.nanmax(grossRangeOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
#fig.tight_layout()
fig.savefig('21.png',format='png')
## Round to integer
fig=plt.figure(22,figsize=(16,9))
#ax = fig.add_subplot(121)
ax = fig.add_axes([0.05,0.05,0.4,0.9])
ax.set_title('gross azimuth offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(np.rint(grossAzimuthOffset),cmap=plt.cm.coolwarm)
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#ax = fig.add_subplot(122)
ax = fig.add_axes([0.55,0.05,0.4,0.9])
ax.set_title('gross range offset',fontsize=15)
print(grossRangeOffset.shape)
cax = ax.imshow(np.rint(grossRangeOffset),cmap=plt.cm.coolwarm)
print("Before plotting the gross offsets (min and max): ", np.rint(np.nanmin(grossAzimuthOffset)),np.rint(np.nanmax(grossAzimuthOffset)))
cbar = fig.colorbar(cax,fraction=0.035,pad=0.04,ticks=np.arange(np.rint(np.nanmin(grossRangeOffset)),np.rint(np.nanmax(grossRangeOffset))+0.1))
cbar.set_label("pixel",fontsize=15)
#fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
#fig.tight_layout()
fig.savefig('22.png',format='png')
return grossAzimuthOffset, grossRangeOffset
def main():
grossObj = grossOffsets()
grossObj.runGrossOffsets()
if __name__=='__main__':
main()