adding UAVSAR_HDF5_SLC Sensor
parent
0409e03520
commit
6ca61fb42b
|
@ -167,7 +167,7 @@ class make_raw(Component, FrameMixin):
|
|||
|
||||
startHeight = sv0.calculateHeight(ellipsoid)
|
||||
midHeight = sv1.calculateHeight(ellipsoid)
|
||||
if 'uav' in self.sensor.family.lower():
|
||||
if ('uav' in self.sensor.family.lower()) and (hasattr(self.sensor, 'platformHeight')):
|
||||
self.spacecraftHeight = self.sensor.platformHeight
|
||||
else:
|
||||
self.spacecraftHeight = startHeight
|
||||
|
|
|
@ -0,0 +1,325 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# United States Government Sponsorship acknowledged. This software is subject to
|
||||
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
||||
# (No [Export] License Required except when exporting to an embargoed country,
|
||||
# end user, or in support of a prohibited end use). By downloading this software,
|
||||
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
||||
# The user has the responsibility to obtain export licenses, or other export
|
||||
# authority as may be required before exporting this software to any 'EAR99'
|
||||
# embargoed foreign country or citizen of those countries.
|
||||
#
|
||||
# Author: Heresh Fattahi
|
||||
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
||||
|
||||
|
||||
import datetime
|
||||
import logging
|
||||
try:
|
||||
import h5py
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Python module h5py is required to process COSMO-SkyMed data"
|
||||
)
|
||||
|
||||
import isceobj
|
||||
from isceobj.Scene.Frame import Frame
|
||||
from isceobj.Orbit.Orbit import StateVector
|
||||
from isceobj.Planet.Planet import Planet
|
||||
from isceobj.Planet.AstronomicalHandbook import Const
|
||||
from isceobj.Sensor import cosar
|
||||
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU
|
||||
from isceobj.Sensor import tkfunc,createAuxFile
|
||||
from iscesys.Component.Component import Component
|
||||
from isceobj.Constants import SPEED_OF_LIGHT
|
||||
|
||||
HDF5 = Component.Parameter(
|
||||
'hdf5',
|
||||
public_name='HDF5',
|
||||
default=None,
|
||||
type=str,
|
||||
mandatory=True,
|
||||
intent='input',
|
||||
doc='UAVSAR slc input file in HDF5 format'
|
||||
)
|
||||
|
||||
FREQUENCY = Component.Parameter(
|
||||
'frequency',
|
||||
public_name='FREQUENCY',
|
||||
default='frequencyA',
|
||||
type=str,
|
||||
mandatory=True,
|
||||
intent='input',
|
||||
doc='frequency band of the UAVSAR slc file to be processed (frequencyA or frequencyB)'
|
||||
)
|
||||
|
||||
POLARIZATION = Component.Parameter(
|
||||
'polarization',
|
||||
public_name='POLARIZATION',
|
||||
default='HH',
|
||||
type=str,
|
||||
mandatory=True,
|
||||
intent='input',
|
||||
doc='polarization channel of the UAVSAR slc file to be processed'
|
||||
)
|
||||
|
||||
from .Sensor import Sensor
|
||||
class UAVSAR_HDF5_SLC(Sensor):
|
||||
"""
|
||||
A class representing a Level1Product meta data.
|
||||
Level1Product(hdf5=h5filename) will parse the hdf5
|
||||
file and produce an object with attributes for metadata.
|
||||
"""
|
||||
parameter_list = (HDF5,
|
||||
FREQUENCY,
|
||||
POLARIZATION) + Sensor.parameter_list
|
||||
|
||||
logging_name = 'isce.Sensor.UAVSAR_HDF5_SLC'
|
||||
family = 'uavsar_hdf5_slc'
|
||||
|
||||
def __init__(self,family='',name=''):# , frequency='frequencyA', polarization='HH'):
|
||||
super(UAVSAR_HDF5_SLC,self).__init__(family if family else self.__class__.family, name=name)
|
||||
self.frame = Frame()
|
||||
self.frame.configure()
|
||||
# Some extra processing parameters unique to UAVSAR HDF5 SLC (currently)
|
||||
self.dopplerRangeTime = []
|
||||
self.dopplerAzimuthTime = []
|
||||
self.azimuthRefTime = None
|
||||
self.rangeRefTime = None
|
||||
self.rangeFirstTime = None
|
||||
self.rangeLastTime = None
|
||||
#self.frequency = frequency
|
||||
#self.polarization = polarization
|
||||
|
||||
self.lookMap = {'right': -1,
|
||||
'left': 1}
|
||||
return
|
||||
|
||||
def __getstate__(self):
|
||||
d = dict(self.__dict__)
|
||||
del d['logger']
|
||||
return d
|
||||
|
||||
def __setstate__(self,d):
|
||||
self.__dict__.update(d)
|
||||
self.logger = logging.getLogger('isce.Sensor.UAVSAR_HDF5_SLC')
|
||||
return
|
||||
|
||||
|
||||
def getFrame(self):
|
||||
return self.frame
|
||||
|
||||
def parse(self):
|
||||
try:
|
||||
fp = h5py.File(self.hdf5,'r')
|
||||
except Exception as strerr:
|
||||
self.logger.error("IOError: %s" % strerr)
|
||||
return None
|
||||
|
||||
self.populateMetadata(fp)
|
||||
fp.close()
|
||||
|
||||
def populateMetadata(self, file):
|
||||
"""
|
||||
Populate our Metadata objects
|
||||
"""
|
||||
|
||||
self._populatePlatform(file)
|
||||
self._populateInstrument(file)
|
||||
self._populateFrame(file)
|
||||
self._populateOrbit(file)
|
||||
|
||||
|
||||
def _populatePlatform(self, file):
|
||||
platform = self.frame.getInstrument().getPlatform()
|
||||
|
||||
platform.setMission(file['/science/LSAR/identification'].get('missionId')[()].decode('utf-8'))
|
||||
platform.setPointingDirection(self.lookMap[file['/science/LSAR/identification'].get('lookDirection')[()].decode('utf-8')])
|
||||
platform.setPlanet(Planet(pname="Earth"))
|
||||
|
||||
# We are not using this value anywhere. Let's fix it for now.
|
||||
platform.setAntennaLength(12.0)
|
||||
|
||||
def _populateInstrument(self, file):
|
||||
instrument = self.frame.getInstrument()
|
||||
|
||||
rangePixelSize = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRangeSpacing'][()]
|
||||
wvl = SPEED_OF_LIGHT/file['/science/LSAR/SLC/swaths/' + self.frequency + '/processedCenterFrequency'][()]
|
||||
instrument.setRadarWavelength(wvl)
|
||||
instrument.setPulseRepetitionFrequency(1.0/file['/science/LSAR/SLC/swaths/zeroDopplerTimeSpacing'][()])
|
||||
rangePixelSize = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRangeSpacing'][()]
|
||||
instrument.setRangePixelSize(rangePixelSize)
|
||||
|
||||
# Chrip slope and length only are used in the split spectrum workflow to compute the bandwidth.
|
||||
# Therefore fixing it to 1.0 won't breack anything
|
||||
Chirp_slope = 1.0
|
||||
rangeBandwidth = file['/science/LSAR/SLC/swaths/' + self.frequency + '/processedRangeBandwidth'][()]
|
||||
Chirp_length = rangeBandwidth/Chirp_slope
|
||||
instrument.setPulseLength(Chirp_length)
|
||||
instrument.setChirpSlope(Chirp_slope)
|
||||
rangeSamplingFrequency = SPEED_OF_LIGHT/2./rangePixelSize
|
||||
instrument.setRangeSamplingRate(rangeSamplingFrequency)
|
||||
|
||||
incangle = 0.0
|
||||
instrument.setIncidenceAngle(incangle)
|
||||
|
||||
|
||||
def _populateFrame(self, file):
|
||||
|
||||
slantRange = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRange'][0]
|
||||
self.frame.setStartingRange(slantRange)
|
||||
|
||||
referenceUTC = file['/science/LSAR/SLC/swaths/zeroDopplerTime'].attrs['units'].decode('utf-8')
|
||||
referenceUTC = referenceUTC.replace('seconds since ','')
|
||||
referenceUTC = datetime.datetime.strptime(referenceUTC,'%Y-%m-%d %H:%M:%S')
|
||||
|
||||
relStart = file['/science/LSAR/SLC/swaths/zeroDopplerTime'][0]
|
||||
relEnd = file['/science/LSAR/SLC/swaths/zeroDopplerTime'][-1]
|
||||
relMid = 0.5*(relStart + relEnd)
|
||||
|
||||
sensingStart = self._combineDateTime(referenceUTC, relStart)
|
||||
sensingStop = self._combineDateTime(referenceUTC, relEnd)
|
||||
sensingMid = self._combineDateTime(referenceUTC, relMid)
|
||||
|
||||
|
||||
self.frame.setPassDirection(file['/science/LSAR/identification'].get('orbitPassDirection')[()].decode('utf-8'))
|
||||
self.frame.setOrbitNumber(file['/science/LSAR/identification'].get('trackNumber')[()])
|
||||
self.frame.setProcessingFacility('JPL')
|
||||
self.frame.setProcessingSoftwareVersion(file['/science/LSAR/SLC/metadata/processingInformation/algorithms'].get('ISCEVersion')[()].decode('utf-8'))
|
||||
self.frame.setPolarization(self.polarization)
|
||||
self.frame.setNumberOfLines(file['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization].shape[0])
|
||||
self.frame.setNumberOfSamples(file['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization].shape[1])
|
||||
self.frame.setSensingStart(sensingStart)
|
||||
self.frame.setSensingMid(sensingMid)
|
||||
self.frame.setSensingStop(sensingStop)
|
||||
|
||||
rangePixelSize = self.frame.instrument.rangePixelSize
|
||||
farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize
|
||||
self.frame.setFarRange(farRange)
|
||||
|
||||
def _populateOrbit(self,file):
|
||||
orbit = self.frame.getOrbit()
|
||||
|
||||
orbit.setReferenceFrame('ECR')
|
||||
orbit.setOrbitSource('Header')
|
||||
|
||||
referenceUTC = file['/science/LSAR/SLC/swaths/zeroDopplerTime'].attrs['units'].decode('utf-8')
|
||||
referenceUTC = referenceUTC.replace('seconds since ','')
|
||||
t0 = datetime.datetime.strptime(referenceUTC,'%Y-%m-%d %H:%M:%S')
|
||||
t = file['/science/LSAR/SLC/metadata/orbit/time']
|
||||
position = file['/science/LSAR/SLC/metadata/orbit/position']
|
||||
velocity = file['/science/LSAR/SLC/metadata/orbit/velocity']
|
||||
|
||||
for i in range(len(position)):
|
||||
vec = StateVector()
|
||||
dt = t0 + datetime.timedelta(seconds=t[i])
|
||||
vec.setTime(dt)
|
||||
vec.setPosition([position[i,0],position[i,1],position[i,2]])
|
||||
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
|
||||
orbit.addStateVector(vec)
|
||||
|
||||
|
||||
def extractImage(self):
|
||||
|
||||
import numpy as np
|
||||
import h5py
|
||||
|
||||
self.parse()
|
||||
|
||||
fid = h5py.File(self.hdf5, 'r')
|
||||
ds = fid['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization]
|
||||
nLines = ds.shape[0]
|
||||
|
||||
with open(self.output, 'wb') as fout:
|
||||
for ii in range(nLines):
|
||||
ds[ii,:].astype(np.complex64).tofile(fout)
|
||||
|
||||
fid.close()
|
||||
|
||||
slcImage = isceobj.createSlcImage()
|
||||
slcImage.setFilename(self.output)
|
||||
slcImage.setXmin(0)
|
||||
slcImage.setXmax(self.frame.getNumberOfSamples())
|
||||
slcImage.setWidth(self.frame.getNumberOfSamples())
|
||||
slcImage.setAccessMode('r')
|
||||
slcImage.renderHdr()
|
||||
self.frame.setImage(slcImage)
|
||||
|
||||
|
||||
def _parseNanoSecondTimeStamp(self,timestamp):
|
||||
"""
|
||||
Parse a date-time string with nanosecond precision and return a datetime object
|
||||
"""
|
||||
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
|
||||
microsec = float(nanoSeconds)*1e-3
|
||||
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
|
||||
dt = dt + datetime.timedelta(microseconds=microsec)
|
||||
return dt
|
||||
|
||||
def _combineDateTime(self,dobj, secsstr):
|
||||
'''Takes the date from dobj and time from secs to spit out a date time object.
|
||||
'''
|
||||
sec = float(secsstr)
|
||||
dt = datetime.timedelta(seconds = sec)
|
||||
return dobj + dt
|
||||
|
||||
def extractDoppler(self):
|
||||
"""
|
||||
Return the doppler centroid as defined in the HDF5 file.
|
||||
"""
|
||||
|
||||
import h5py
|
||||
from scipy.interpolate import UnivariateSpline
|
||||
import numpy as np
|
||||
|
||||
h5 = h5py.File(self.hdf5,'r')
|
||||
|
||||
# extract the 2D LUT of Doppler and choose only one range line as the data duplicates for other range lines
|
||||
dop = h5['/science/LSAR/SLC/metadata/processingInformation/parameters/' + self.frequency + '/dopplerCentroid'][0,:]
|
||||
rng = h5['/science/LSAR/SLC/metadata/processingInformation/parameters/slantRange']
|
||||
|
||||
# extract the slant range of the image grid
|
||||
imgRng = h5['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRange']
|
||||
|
||||
# use only part of the slant range that closely covers image ranges and ignore the rest
|
||||
ind0 = np.argmin(np.abs(rng-imgRng[0])) - 1
|
||||
ind0 = np.max([0,ind0])
|
||||
ind1 = np.argmin(np.abs(rng-imgRng[-1])) + 1
|
||||
ind1 = np.min([ind1, rng.shape[0]])
|
||||
|
||||
dop = dop[ind0:ind1]
|
||||
rng = rng[ind0:ind1]
|
||||
|
||||
f = UnivariateSpline(rng, dop)
|
||||
imgDop = f(imgRng)
|
||||
|
||||
dr = imgRng[1]-imgRng[0]
|
||||
pix = (imgRng - imgRng[0])/dr
|
||||
fit = np.polyfit(pix, imgDop, 41)
|
||||
|
||||
self.frame._dopplerVsPixel = list(fit[::-1])
|
||||
|
||||
####insarApp style (doesn't get used for stripmapApp). A fixed Doppler at the middle of the scene
|
||||
quadratic = {}
|
||||
quadratic['a'] = imgDop[int(imgDop.shape[0]/2)]/self.frame.getInstrument().getPulseRepetitionFrequency()
|
||||
quadratic['b'] = 0.
|
||||
quadratic['c'] = 0.
|
||||
|
||||
return quadratic
|
|
@ -97,6 +97,7 @@ createERS_ENVISAT = partial(factory_template, 'ERS_EnviSAT')
|
|||
createERS_EnviSAT_SLC = partial(factory_template, 'ERS_EnviSAT_SLC')
|
||||
createSICD_RGZERO = partial(factory_template, 'SICD_RGZERO')
|
||||
createICEYE_SLC = partial(factory_template, 'ICEYE_SLC')
|
||||
createUAVSAR_Hdf5_SLC = partial(factory_template, 'UAVSAR_HDF5_SLC')
|
||||
|
||||
SENSORS = {'ALOS' : createALOS,
|
||||
'ALOS_SLC' : createALOS_SLC,
|
||||
|
@ -121,7 +122,8 @@ SENSORS = {'ALOS' : createALOS,
|
|||
'ERS_ENVISAT' : createERS_ENVISAT,
|
||||
'ERS_ENVISAT_SLC' : createERS_EnviSAT_SLC,
|
||||
'SICD_RGZERO' : createSICD_RGZERO,
|
||||
'ICEYE_SLC' : createICEYE_SLC}
|
||||
'ICEYE_SLC' : createICEYE_SLC,
|
||||
'UAVSAR_HDF5_SLC' : createUAVSAR_Hdf5_SLC}
|
||||
|
||||
#These are experimental and can be added in as they become ready
|
||||
# 'JERS': createJERS,
|
||||
|
|
|
@ -52,7 +52,7 @@ def isRawSensor(sensor):
|
|||
'''
|
||||
Check if input data is raw / slc.
|
||||
'''
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','alos_slc','envisat_slc', 'uavsar_rpi','ers_envisat_slc','sicd_rgzero', 'iceye_slc']:
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','alos_slc','envisat_slc', 'uavsar_rpi','ers_envisat_slc','sicd_rgzero', 'iceye_slc', 'uavsar_hdf5_slc']:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
@ -63,7 +63,7 @@ def isZeroDopplerSLC(sensor):
|
|||
Check if SLC is zero doppler / native doppler.
|
||||
'''
|
||||
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','envisat_slc','ers_envisat_slc','sicd_rgzero', 'iceye_slc']:
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','envisat_slc','ers_envisat_slc','sicd_rgzero', 'iceye_slc', 'uavsar_hdf5_slc']:
|
||||
return True
|
||||
elif sensor.lower() in ['alos_slc', 'uavsar_rpi']:
|
||||
return False
|
||||
|
@ -76,7 +76,7 @@ def getDopplerMethod(sensor):
|
|||
Return appropriate doppler method based on user input.
|
||||
'''
|
||||
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','alos_slc','envisat_slc', 'uavsar_rpi','cosmo_skymed','ers_envisat_slc','sicd_rgzero', 'iceye_slc']:
|
||||
if str(sensor).lower() in ["terrasarx","cosmo_skymed_slc","radarsat2",'tandemx', 'kompsat5','risat1_slc','sentinel1', 'alos2','ers_slc','alos_slc','envisat_slc', 'uavsar_rpi','cosmo_skymed','ers_envisat_slc','sicd_rgzero', 'iceye_slc', 'uavsar_hdf5_slc']:
|
||||
res = 'useDEFAULT'
|
||||
else:
|
||||
res = 'useDOPIQ'
|
||||
|
|
Loading…
Reference in New Issue