Merge branch 'master' of https://github.com/isce-framework/isce2 into UAVSAR

LT1AB
Eric J. Fielding 2019-12-03 16:41:41 -08:00
commit 36e7012e66
49 changed files with 2239 additions and 742 deletions

View File

@ -23,7 +23,7 @@ jobs:
pwd
mkdir config build install
. /opt/conda/bin/activate root
conda install --yes cython gdal h5py libgdal pytest numpy fftw scipy basemap scons opencv hdf4 hdf5 netcdf4 libgcc libstdcxx-ng cmake
conda install --yes cython gdal h5py libgdal pytest numpy fftw scipy basemap scons opencv hdf4 hdf5 netcdf4 libgcc libstdcxx-ng cmake astropy
yum install -y uuid-devel x11-devel motif-devel jq gcc-gfortran
ln -s /opt/conda/bin/cython /opt/conda/bin/cython3
cd /opt/conda/lib

View File

@ -623,7 +623,23 @@ between three files as follows:
<property name="OUTPUT">20061231</property>
</component>
```
### rtcApp.xml
The inputs are Sentinel GRD zipfiles
```xml
<rtcApp>
<constant name="dir">/Users/data/sentinel1 </constant>
<component name="rtcApp">
<property name="posting">20</property>
<property name="sensor name">sentinel1</property>
<component name="master">
<property name="safe">$dir$/rtcApp/data/S1A_IW_GRDH_1SDV_20181221T225104_20181221T225129_025130_02C664_B46C.zip</property>
<property name="orbit directory">$dir$/orbits</property>
<property name="output directory">$dir$/rtcApp/output</property>
<property name="polarization">[VV, VH]</property>
</component>
</component>
</rtcApp>
```
-----
## Component Configurability

View File

@ -293,6 +293,7 @@ def main(args, files):
#######Determine number of input and output bands
bandList = []
iMath['equations'] = []
for ii,expr in enumerate(args.equation.split(';')):
#####Now parse the equation to get the file names used
@ -319,7 +320,11 @@ def main(args, files):
######Create input memmaps
for ii,infile in enumerate(fileList):
if type(files) == list:
fstr, files = parseInputFile(infile, files)
else:
fstr = getattr(files, infile)
logger.debug('Input string for File %d: %s: %s'%(ii, infile, fstr))
if len(fstr.split(';')) > 1:
@ -341,6 +346,7 @@ def main(args, files):
if bbox is not None:
iMath['bboxes'].append(bbox)
if type(files) == list:
if len(files):
raise IOError('Unused input variables set:\n'+ ' '.join(files))

View File

@ -155,7 +155,7 @@ NUMBER_RANGE_LOOKS = Application.Parameter('numberRangeLooks',
)
POSTING = Application.Parameter('posting',
public_name='azimuth looks',
public_name='posting',
default = 20.0,
type = float,
mandatory = False,
@ -363,6 +363,7 @@ class GRDSAR(Application):
self.verifyDEM = RtcProc.createVerifyDEM(self)
self.multilook = RtcProc.createLooks(self)
self.runTopo = RtcProc.createTopo(self)
self.runNormalize = RtcProc.createNormalize(self)
# self.runGeocode = RtcProc.createGeocode(self)
return None
@ -392,6 +393,9 @@ class GRDSAR(Application):
##Run topo for each bursts
self.step('topo', func=self.runTopo)
##Run normalize to get gamma0
self.step('normalize', func=self.runNormalize)
# Geocode
# self.step('geocode', func=self.runGeocode,
# args=(self.geocode_list, self.do_unwrap, self.geocode_bbox))
@ -417,6 +421,9 @@ class GRDSAR(Application):
##Run topo for each burst
self.runTopo()
##Run normalize to get gamma0
self.runNormalize()
###Compute covariance
# self.runEstimateCovariance()

View File

@ -242,14 +242,20 @@ FILTER_STRENGTH = Application.Parameter('filterStrength',
mandatory=False,
doc='')
DO_RUBBERSHEETING = Application.Parameter('doRubbersheeting',
public_name='do rubbersheeting',
############################################## Modified by V.Brancato 10.07.2019
DO_RUBBERSHEETINGAZIMUTH = Application.Parameter('doRubbersheetingAzimuth',
public_name='do rubbersheetingAzimuth',
default=False,
type=bool,
mandatory=False,
doc='')
DO_RUBBERSHEETINGRANGE = Application.Parameter('doRubbersheetingRange',
public_name='do rubbersheetingRange',
default=False,
type=bool,
mandatory=False,
doc='')
#################################################################################
RUBBERSHEET_SNR_THRESHOLD = Application.Parameter('rubberSheetSNRThreshold',
public_name='rubber sheet SNR Threshold',
default = 5.0,
@ -533,7 +539,8 @@ class _RoiBase(Application, FrameMixin):
GEOCODE_BOX,
REGION_OF_INTEREST,
HEIGHT_RANGE,
DO_RUBBERSHEETING,
DO_RUBBERSHEETINGRANGE, #Modified by V. Brancato 10.07.2019
DO_RUBBERSHEETINGAZIMUTH, #Modified by V. Brancato 10.07.2019
RUBBERSHEET_SNR_THRESHOLD,
RUBBERSHEET_FILTER_SIZE,
DO_DENSEOFFSETS,
@ -724,7 +731,8 @@ class _RoiBase(Application, FrameMixin):
self.runResampleSlc = StripmapProc.createResampleSlc(self)
self.runRefineSlaveTiming = StripmapProc.createRefineSlaveTiming(self)
self.runDenseOffsets = StripmapProc.createDenseOffsets(self)
self.runRubbersheet = StripmapProc.createRubbersheet(self)
self.runRubbersheetRange = StripmapProc.createRubbersheetRange(self) #Modified by V. Brancato 10.07.2019
self.runRubbersheetAzimuth =StripmapProc.createRubbersheetAzimuth(self) #Modified by V. Brancato 10.07.2019
self.runResampleSubbandSlc = StripmapProc.createResampleSubbandSlc(self)
self.runInterferogram = StripmapProc.createInterferogram(self)
self.runFilter = StripmapProc.createFilter(self)
@ -774,8 +782,11 @@ class _RoiBase(Application, FrameMixin):
args=('refined',))
self.step('dense_offsets', func=self.runDenseOffsets)
######################################################################## Modified by V. Brancato 10.07.2019
self.step('rubber_sheet_range', func=self.runRubbersheetRange)
self.step('rubber_sheet', func=self.runRubbersheet)
self.step('rubber_sheet_azimuth',func=self.runRubbersheetAzimuth)
#########################################################################
self.step('fine_resample', func=self.runResampleSlc,
args=('fine',))
@ -853,9 +864,13 @@ class _RoiBase(Application, FrameMixin):
# run dense offsets
self.runDenseOffsets()
############ Modified by V. Brancato 10.07.2019
# adding the azimuth offsets computed from cross correlation to geometry offsets
self.runRubbersheet()
self.runRubbersheetAzimuth()
# adding the range offsets computed from cross correlation to geometry offsets
self.runRubbersheetRange()
####################################################################################
# resampling using rubbersheeted offsets
# which include geometry + constant range + constant azimuth
# + dense azimuth offsets

View File

@ -1061,7 +1061,7 @@ class Orbit(Component):
###This wont break the old interface but could cause
###issues at midnight crossing
if reference is None:
reference = self.minTime()
reference = self.minTime
refEpoch = reference.replace(hour=0, minute=0, second=0, microsecond=0)

View File

@ -46,5 +46,6 @@ createPreprocessor = _factory("runPreprocessor")
createVerifyDEM = _factory("runVerifyDEM")
createLooks = _factory("runLooks")
createTopo = _factory("runTopo")
createNormalize = _factory("runNormalize")
#createGeocode = _factory("runGeocode")

View File

@ -69,7 +69,7 @@ INC_FILENAME = Component.Parameter(
GAMMA0_FILENAME = Component.Parameter(
'gamma0FileName',
public_name='Gamma0 backscatter file',
default = 'gamma0.rdr',
default = 'gamma0.img',
type = str,
mandatory = False,
doc = 'Unmasked gamma0 backscatter file')

View File

@ -1,4 +1,4 @@
#
#!/usr/bin/env python3
# Author: Piyush Agram
# Copyright 2016
#
@ -6,19 +6,23 @@
import logging
import isceobj
import mroipac
from .runTopo import filenameWithLooks
from .runLooks import takeLooks
import os
import itertools
import numpy as np
from isceobj.Util.decorators import use_api
from applications import imageMath
logger = logging.getLogger('isce.grdsar.looks')
class Dummy:
pass
def runNormalize(self):
'''
Make sure that a DEM is available for processing the given data.
'''
refPol = self._grd.polarizations[0]
master = self._grd.loadProduct( os.path.join(self._grd.outputFolder, 'beta_{0}.xml'.format(refPol)))
@ -26,17 +30,31 @@ def runNormalize(self):
azlooks, rglooks = self._grd.getLooks( self.posting, master.groundRangePixelSize, master.azimuthPixelSize, self.numberAzimuthLooks, self.numberRangeLooks)
if (azlooks == 1) and (rglooks == 1):
return
slantRange = False
for pol in self._grd.polarizations:
inname = os.path.join( self._grd.outputFolder, 'beta_{0}.img'.format(pol) )
takeLooks(inname, azlooks, rglooks)
if (azlooks == 1) and (rglooks == 1):
inname = os.path.join( self._grd.outputFolder, 'beta_{0}.img'.format(pol))
else:
inname = os.path.join( self._grd.outputFolder, filenameWithLooks('beta_{0}.img'.format(pol), azlooks, rglooks))
if not slantRange:
inname = master.slantRangeImage.filename
takeLooks(inname, azlooks, rglooks)
slantRange = True
basefolder, output = os.path.split(self._grd.outputFolder)
incname = os.path.join(basefolder, self._grd.geometryFolder, self._grd.incFileName)
outname = os.path.join(self._grd.outputFolder, filenameWithLooks('gamma_{0}'.format(pol)+'.img', azlooks, rglooks))
maskname = os.path.join(basefolder, self._grd.geometryFolder, self._grd.slMaskFileName)
args = imageMath.createNamespace()
args.equation = 'a*cos(b_0*PI/180.)/cos(b_1*PI/180.) * (c==0)'
args.dtype = np.float32
args.scheme = 'BIL'
args.out = outname
#args.debug = True
files = Dummy()
files.a = inname
files.b = incname
files.c = maskname
imageMath.main(args, files)
return

View File

@ -261,10 +261,10 @@ class Sentinel1(Component):
self.validateUserInputs()
if self.xml.startswith('/vsizip'): #Read from zip file
if '.zip' in self.xml:
try:
parts = self.xml.split(os.path.sep)
zipname = os.path.join(*(parts[2:-3]))
zipname = os.path.join('/',*(parts[:-3]))
fname = os.path.join(*(parts[-3:]))
with zipfile.ZipFile(zipname, 'r') as zf:
@ -283,23 +283,22 @@ class Sentinel1(Component):
self.populateMetadata()
self.populateBbox()
####Tru and locate an orbit file
####Try and locate an orbit file
if self.orbitFile is None:
if self.orbitDir is not None:
self.orbitFile = self.findOrbitFile()
print('Found this orbitfile: %s' %self.orbitFile)
####Read in the orbits
if self.orbitFile:
if '_POEORB_' in self.orbitFile:
orb = self.extractPreciseOrbit()
else:
elif '_RESORB_' in self.orbitFile:
orb = self.extractOrbit()
self.product.orbit.setOrbitSource('Header')
for sv in orb:
self.product.orbit.addStateVector(sv)
self.populateIPFVersion()
self.extractBetaLUT()
self.extractNoiseLUT()
@ -423,10 +422,11 @@ class Sentinel1(Component):
nsp = "{http://www.esa.int/safe/sentinel-1.0}"
if self.manifest.startswith('/vsizip'):
if '.zip' in self.manifest:
import zipfile
parts = self.manifest.split(os.path.sep)
zipname = os.path.join(*(parts[2:-2]))
zipname = os.path.join('/',*(parts[:-2]))
fname = os.path.join(*(parts[-2:]))
try:
@ -462,23 +462,25 @@ class Sentinel1(Component):
datefmt = "%Y%m%dT%H%M%S"
types = ['POEORB', 'RESORB']
filelist = []
match = []
timeStamp = self.product.sensingMid
timeStamp = self.product.sensingStart+(self.product.sensingStop - self.product.sensingStart)/2.
for orbType in types:
files = glob.glob( os.path.join(self.orbitDir, 'S1A_OPER_AUX_' + orbType + '_OPOD*'))
filelist.extend(files)
###List all orbit files
for result in files:
for result in filelist:
fields = result.split('_')
taft = datetime.datetime.strptime(fields[-1][0:15], datefmt)
tbef = datetime.datetime.strptime(fields[-2][1:16], datefmt)
print(taft, tbef)
#####Get all files that span the acquisition
if (tbef <= timeStamp) and (taft >= timeStamp):
tmid = tbef + 0.5 * (taft - tbef)
match.append((result, abs((timeStamp-tmid).total_seconds())))
#####Return the file with the image is aligned best to the middle of the file
if len(match) != 0:
bestmatch = min(match, key = lambda x: x[1])
@ -516,13 +518,7 @@ class Sentinel1(Component):
vec.setVelocity(vel)
frameOrbit.addStateVector(vec)
orbExt = OrbitExtender(planet=Planet(pname='Earth'))
orbExt.configure()
newOrb = orbExt.extendOrbit(frameOrbit)
return newOrb
return frameOrbit
def extractPreciseOrbit(self):
'''
@ -534,11 +530,10 @@ class Sentinel1(Component):
print("IOError: %s" % strerr)
return
_xml_root = ElementTree(file=fp).getroot()
_xml_root = ElementTree.ElementTree(file=fp).getroot()
node = _xml_root.find('Data_Block/List_of_OSVs')
print('Extracting orbit from Orbit File: ', self.orbitFile)
orb = Orbit()
orb.configure()
@ -582,10 +577,10 @@ class Sentinel1(Component):
if self.calibrationXml is None:
raise Exception('No calibration file provided')
if self.calibrationXml.startswith('/vsizip'):
if '.zip' in self.calibrationXml:
import zipfile
parts = self.calibrationXml.split(os.path.sep)
zipname = os.path.join(*(parts[2:-4]))
zipname = os.path.join('/',*(parts[:-4]))
fname = os.path.join(*(parts[-4:]))
try:
@ -723,7 +718,7 @@ class Sentinel1(Component):
print('Extracting normalized image ....')
src = gdal.Open(self.tiff.strip(), gdal.GA_ReadOnly)
src = gdal.Open('/vsizip//'+self.tiff.strip(), gdal.GA_ReadOnly)
band = src.GetRasterBand(1)
if self.product.numberOfSamples != src.RasterXSize:

View File

@ -21,6 +21,7 @@ c get alos position and times
integer*1 indata(32768)
integer statb(13),stat
integer numdata,rowPos,colPos,eof
integer*4 unpackBytes
c read the leader file descriptor record
!!!!!!!!!!!!!!!!!!
@ -106,12 +107,9 @@ c read in the raw data file line by line
do i=1,nlines
! jng ierr=ioread(ichandata,indata,len)
call getLineSequential(rawAccessor,indata,eof)
iyear=iand(indata(40),255)*256*256*256+iand(indata(39),255)*256*256+
$ iand(indata(38),255)*256+iand(indata(37),255)
idoy=iand(indata(44),255)*256*256*256+iand(indata(43),255)*256*256+
$ iand(indata(42),255)*256+iand(indata(41),255)
ims=iand(indata(48),255)*256*256*256+iand(indata(47),255)*256*256+
$ iand(indata(46),255)*256+iand(indata(45),255)
iyear = unpackBytes(indata(40), indata(39), indata(38), indata(37))
idoy = unpackBytes(indata(44), indata(43), indata(42), indata(41))
ims = unpackBytes(indata(48), indata(47), indata(46), indata(45))
ddate(2) = ims*1000.0 !we save days in the year and microsec in the day
ddate(1) = 1.*idoy
call setLineSequential(auxAccessor,ddate)
@ -144,3 +142,9 @@ c print *,val
return
end
integer*4 function unpackBytes(i1, i2, i3, i4)
integer*4 i1, i2, i3, i4
unpackBytes = iand(i1, 255)*256*256*256 + iand(i2, 255)*256*256 +
$ iand(i3, 255)*256 + iand(i4, 255)
end function

View File

@ -112,7 +112,8 @@ createResampleSlc = _factory("runResampleSlc")
createResampleSubbandSlc = _factory("runResampleSubbandSlc")
createRefineSlaveTiming = _factory("runRefineSlaveTiming")
createDenseOffsets = _factory("runDenseOffsets")
createRubbersheet = _factory("runRubbersheet")
createRubbersheetAzimuth = _factory("runRubbersheetAzimuth") # Modified by V. Brancato (10.07.2019)
createRubbersheetRange = _factory("runRubbersheetRange") # Modified by V. Brancato (10.07.2019)
createInterferogram = _factory("runInterferogram")
createCoherence = _factory("runCoherence")
createFilter = _factory("runFilter")

View File

@ -49,7 +49,7 @@ listFiles = ['StripmapProc.py', 'runPreprocessor.py', 'runSplitSpectrum.py',
'Factories.py' , 'runDenseOffsets.py', 'runResampleSlc.py' , 'runUnwrapGrass.py',
'__init__.py' , 'runDispersive.py' , 'runResampleSubbandSlc.py', 'runUnwrapIcu.py',
'runFilter.py' , 'runROI.py' , 'runUnwrapSnaphu.py', 'runCrop.py',
'runGeo2rdr.py', 'runRubbersheet.py', '__StripmapProc.py' , 'runInterferogram.py',
'runGeo2rdr.py', 'runRubbersheetRange.py', 'runRubbersheetAzimuth.py', '__StripmapProc.py' , 'runInterferogram.py',
'runVerifyDEM.py', 'runGeocode.py', 'Sensor.py'
]

View File

@ -325,7 +325,7 @@ AZIMUTH_OFFSET_FILENAME = Component.Parameter('azimuthOffsetFilename',
doc='')
# Modified by V. Brancato 10.07.2019
AZIMUTH_RUBBERSHEET_FILENAME = Component.Parameter('azimuthRubbersheetFilename',
public_name='azimuth Rubbersheet Image Name',
default = 'azimuth_sheet.off',
@ -333,6 +333,13 @@ AZIMUTH_RUBBERSHEET_FILENAME = Component.Parameter('azimuthRubbersheetFilename',
mandatory=False,
doc='')
RANGE_RUBBERSHEET_FILENAME = Component.Parameter('rangeRubbersheetFilename',
public_name='range Rubbersheet Image Name',
default = 'range_sheet.off',
type=str,
mandatory=False,
doc='')
# End of modification
MISREG_FILENAME = Component.Parameter('misregFilename',
public_name='misreg file name',
default='misreg',
@ -346,7 +353,7 @@ DENSE_OFFSET_FILENAME = Component.Parameter('denseOffsetFilename',
type=str,
mandatory=False,
doc='file name of dense offsets computed from cross correlating two SLC images')
# Modified by V. Brancato 10.07.2019
FILT_AZIMUTH_OFFSET_FILENAME = Component.Parameter('filtAzimuthOffsetFilename',
public_name='filtered azimuth offset filename',
default='filtAzimuth.off',
@ -354,6 +361,13 @@ FILT_AZIMUTH_OFFSET_FILENAME = Component.Parameter('filtAzimuthOffsetFilename',
mandatory=False,
doc='Filtered azimuth dense offsets')
FILT_RANGE_OFFSET_FILENAME = Component.Parameter('filtRangeOffsetFilename',
public_name='filtered range offset filename',
default='filtRange.off',
type=str,
mandatory=False,
doc='Filtered range dense offsets')
# End of modification
DISPERSIVE_FILENAME = Component.Parameter('dispersiveFilename',
public_name = 'dispersive phase filename',
default='dispersive.bil',
@ -470,8 +484,10 @@ class StripmapProc(Component, FrameMixin):
LOS_FILENAME,
RANGE_OFFSET_FILENAME,
AZIMUTH_OFFSET_FILENAME,
AZIMUTH_RUBBERSHEET_FILENAME,
FILT_AZIMUTH_OFFSET_FILENAME,
AZIMUTH_RUBBERSHEET_FILENAME, # Added by V. Brancato 10.07.2019
RANGE_RUBBERSHEET_FILENAME, # Added by V. Brancato 10.07.2019
FILT_AZIMUTH_OFFSET_FILENAME, # Added by V. Brancato 10.07.2019
FILT_RANGE_OFFSET_FILENAME, # Added by V. Brancato 10.07.2019
DENSE_OFFSET_FILENAME,
MISREG_FILENAME,
DISPERSIVE_FILENAME,

View File

@ -1,14 +1,73 @@
#
# Author: Heresh Fattahi, 2017
#
# Modified by V. Brancato (10.2019)
# (Included flattening when rubbersheeting in range is turned on
import isceobj
import logging
from components.stdproc.stdproc import crossmul
from iscesys.ImageUtil.ImageUtil import ImageUtil as IU
import os
import gdal
import numpy as np
logger = logging.getLogger('isce.insar.runInterferogram')
# Added by V. Brancato 10.09.2019
def write_xml(fileName,width,length,bands,dataType,scheme):
img = isceobj.createImage()
img.setFilename(fileName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = bands
img.dataType = dataType
img.scheme = scheme
img.renderHdr()
img.renderVRT()
return None
def compute_FlatEarth(self,ifgFilename,width,length,radarWavelength):
from imageMath import IML
import logging
# If rubbersheeting has been performed add back the range sheet offsets
info = self._insar.loadProduct(self._insar.slaveSlcCropProduct)
#radarWavelength = info.getInstrument().getRadarWavelength()
rangePixelSize = info.getInstrument().getRangePixelSize()
fact = 4 * np.pi* rangePixelSize / radarWavelength
cJ = np.complex64(-1j)
# Open the range sheet offset
rngOff = os.path.join(self.insar.offsetsDirname, self.insar.rangeOffsetFilename )
print(rngOff)
if os.path.exists(rngOff):
rng2 = np.memmap(rngOff, dtype=np.float64, mode='r', shape=(length,width))
else:
print('No range offsets provided')
rng2 = np.zeros((length,width))
# Open the interferogram
#ifgFilename= os.path.join(self.insar.ifgDirname, self.insar.ifgFilename)
intf = np.memmap(ifgFilename+'.full',dtype=np.complex64,mode='r+',shape=(length,width))
for ll in range(length):
intf[ll,:] *= np.exp(cJ*fact*rng2[ll,:])
del rng2
del intf
return
def multilook(infile, outname=None, alks=5, rlks=15):
'''
Take looks.
@ -66,8 +125,9 @@ def computeCoherence(slc1name, slc2name, corname, virtual=True):
slc2.finalizeImage()
return
def generateIgram(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
# Modified by V. Brancato on 10.09.2019 (added self)
# Modified by V. Brancato on 11.13.2019 (added radar wavelength for low and high band flattening
def generateIgram(self,imageSlc1, imageSlc2, resampName, azLooks, rgLooks,radarWavelength):
objSlc1 = isceobj.createSlcImage()
IU.copyAttributes(imageSlc1, objSlc1)
objSlc1.setAccessMode('read')
@ -79,7 +139,12 @@ def generateIgram(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
objSlc2.createImage()
slcWidth = imageSlc1.getWidth()
intWidth = int(slcWidth / rgLooks)
if not self.doRubbersheetingRange:
intWidth = int(slcWidth/rgLooks) # Modified by V. Brancato intWidth = int(slcWidth / rgLooks)
else:
intWidth = int(slcWidth)
lines = min(imageSlc1.getLength(), imageSlc2.getLength())
@ -93,7 +158,7 @@ def generateIgram(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
resampInt = resampName
objInt = isceobj.createIntImage()
objInt.setFilename(resampInt)
objInt.setFilename(resampInt+'.full')
objInt.setWidth(intWidth)
imageInt = isceobj.createIntImage()
IU.copyAttributes(objInt, imageInt)
@ -101,13 +166,15 @@ def generateIgram(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
objInt.createImage()
objAmp = isceobj.createAmpImage()
objAmp.setFilename(resampAmp)
objAmp.setFilename(resampAmp+'.full')
objAmp.setWidth(intWidth)
imageAmp = isceobj.createAmpImage()
IU.copyAttributes(objAmp, imageAmp)
objAmp.setAccessMode('write')
objAmp.createImage()
if not self.doRubbersheetingRange:
print('Rubbersheeting in range is off, interferogram is already flattened')
objCrossmul = crossmul.createcrossmul()
objCrossmul.width = slcWidth
objCrossmul.length = lines
@ -115,14 +182,32 @@ def generateIgram(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
objCrossmul.LooksAcross = rgLooks
objCrossmul.crossmul(objSlc1, objSlc2, objInt, objAmp)
else:
# Modified by V. Brancato 10.09.2019 (added option to add Range Rubber sheet Flat-earth back)
print('Rubbersheeting in range is on, removing flat-Earth phase')
objCrossmul = crossmul.createcrossmul()
objCrossmul.width = slcWidth
objCrossmul.length = lines
objCrossmul.LooksDown = 1
objCrossmul.LooksAcross = 1
objCrossmul.crossmul(objSlc1, objSlc2, objInt, objAmp)
# Remove Flat-Earth component
compute_FlatEarth(self,resampInt,intWidth,lines,radarWavelength)
# Perform Multilook
multilook(resampInt+'.full', outname=resampInt, alks=azLooks, rlks=rgLooks) #takeLooks(objAmp,azLooks,rgLooks)
multilook(resampAmp+'.full', outname=resampAmp, alks=azLooks, rlks=rgLooks) #takeLooks(objInt,azLooks,rgLooks)
#os.system('rm ' + resampInt+'.full* ' + resampAmp + '.full* ')
# End of modification
for obj in [objInt, objAmp, objSlc1, objSlc2]:
obj.finalizeImage()
return imageInt, imageAmp
def subBandIgram(self, masterSlc, slaveSlc, subBandDir):
def subBandIgram(self, masterSlc, slaveSlc, subBandDir,radarWavelength):
img1 = isceobj.createImage()
img1.load(masterSlc + '.xml')
@ -142,7 +227,7 @@ def subBandIgram(self, masterSlc, slaveSlc, subBandDir):
interferogramName = os.path.join(ifgDir , self.insar.ifgFilename)
generateIgram(img1, img2, interferogramName, azLooks, rgLooks)
generateIgram(self,img1, img2, interferogramName, azLooks, rgLooks,radarWavelength)
return interferogramName
@ -175,9 +260,9 @@ def runSubBandInterferograms(self):
slaveHighBandSlc = os.path.join(coregDir , os.path.basename(slaveSlc))
##########
interferogramName = subBandIgram(self, masterLowBandSlc, slaveLowBandSlc, self.insar.lowBandSlcDirname)
interferogramName = subBandIgram(self, masterLowBandSlc, slaveLowBandSlc, self.insar.lowBandSlcDirname,self.insar.lowBandRadarWavelength)
interferogramName = subBandIgram(self, masterHighBandSlc, slaveHighBandSlc, self.insar.highBandSlcDirname)
interferogramName = subBandIgram(self, masterHighBandSlc, slaveHighBandSlc, self.insar.highBandSlcDirname,self.insar.highBandRadarWavelength)
def runFullBandInterferogram(self):
logger.info("Generating interferogram")
@ -185,7 +270,7 @@ def runFullBandInterferogram(self):
masterFrame = self._insar.loadProduct( self._insar.masterSlcCropProduct)
masterSlc = masterFrame.getImage().filename
if self.doRubbersheeting:
if (self.doRubbersheetingRange | self.doRubbersheetingAzimuth):
slaveSlc = os.path.join(self._insar.coregDirname, self._insar.fineCoregFilename)
else:
slaveSlc = os.path.join(self._insar.coregDirname, self._insar.refinedCoregFilename)
@ -212,7 +297,10 @@ def runFullBandInterferogram(self):
interferogramName = os.path.join(ifgDir , self.insar.ifgFilename)
generateIgram(img1, img2, interferogramName, azLooks, rgLooks)
info = self._insar.loadProduct(self._insar.slaveSlcCropProduct)
radarWavelength = info.getInstrument().getRadarWavelength()
generateIgram(self,img1, img2, interferogramName, azLooks, rgLooks,radarWavelength)
###Compute coherence
@ -221,7 +309,7 @@ def runFullBandInterferogram(self):
multilook(cohname+'.full', outname=cohname, alks=azLooks, rlks=rgLooks)
###Multilook relevant geometry products
##Multilook relevant geometry products
for fname in [self.insar.latFilename, self.insar.lonFilename, self.insar.losFilename]:
inname = os.path.join(self.insar.geometryDirname, fname)
multilook(inname + '.full', outname= inname, alks=azLooks, rlks=rgLooks)

View File

@ -23,7 +23,7 @@ def runResampleSlc(self, kind='coarse'):
raise Exception('Unknown operation type {0} in runResampleSlc'.format(kind))
if kind == 'fine':
if not self.doRubbersheeting:
if not (self.doRubbersheetingRange | self.doRubbersheetingAzimuth): # Modified by V. Brancato 10.10.2019
print('Rubber sheeting not requested, skipping resampling ....')
return
@ -68,11 +68,24 @@ def runResampleSlc(self, kind='coarse'):
#Since the app is based on geometry module we expect pixel-by-pixel offset
#field
offsetsDir = self.insar.offsetsDirname
rgname = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
# Modified by V. Brancato 10.10.2019
#rgname = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
if kind in ['coarse', 'refined']:
azname = os.path.join(offsetsDir, self.insar.azimuthOffsetFilename)
rgname = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
else:
azname = os.path.join(offsetsDir, self.insar.azimuthRubbersheetFilename)
if self.doRubbersheetingRange:
print('Rubbersheeting in range is turned on, taking the cross-correlation offsets')
print('Setting Flattening to False')
rgname = os.path.join(offsetsDir, self.insar.rangeRubbersheetFilename)
flatten=False
else:
print('Rubbersheeting in range is turned off, taking range geometric offsets')
rgname = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
flatten=True
rngImg = isceobj.createImage()
rngImg.load(rgname + '.xml')
@ -85,8 +98,8 @@ def runResampleSlc(self, kind='coarse'):
width = rngImg.getWidth()
length = rngImg.getLength()
flatten = True
# Modified by V. Brancato 10.10.2019
#flatten = True
rObj.flatten = flatten
rObj.outputWidth = width
rObj.outputLines = length

View File

@ -14,7 +14,8 @@ import shelve
logger = logging.getLogger('isce.insar.runResampleSubbandSlc')
def resampleSlc(masterFrame, slaveFrame, imageSlc2, radarWavelength, coregDir,
# Modified by V. Brancato 10.14.2019 added "self" as input parameter of resampleSLC
def resampleSlc(self,masterFrame, slaveFrame, imageSlc2, radarWavelength, coregDir,
azoffname, rgoffname, azpoly = None, rgpoly = None, misreg=False):
logger.info("Resampling slave SLC")
@ -56,8 +57,17 @@ def resampleSlc(masterFrame, slaveFrame, imageSlc2, radarWavelength, coregDir,
width = rngImg.getWidth()
length = rngImg.getLength()
# Modified by V. Brancato on 10.14.2019 (if Rubbersheeting in range is turned on, flatten the interferogram during cross-correlation)
if not self.doRubbersheetingRange:
print('Rubber sheeting in range is turned off, flattening the interferogram during resampling')
flatten = True
print(flatten)
else:
print('Rubber sheeting in range is turned on, flattening the interferogram during interferogram formation')
flatten=False
print(flatten)
# end of Modification
rObj.flatten = flatten
rObj.outputWidth = width
rObj.outputLines = length
@ -105,15 +115,25 @@ def runResampleSubbandSlc(self, misreg=False):
masterFrame = self._insar.loadProduct( self._insar.masterSlcCropProduct)
slaveFrame = self._insar.loadProduct( self._insar.slaveSlcCropProduct)
if self.doRubbersheeting:
print('Using rubber sheeted offsets for resampling sub-bands')
# Modified by V. Brancato 10.14.2019
if self.doRubbersheetingAzimuth:
print('Using rubber in azimuth sheeted offsets for resampling sub-bands')
azoffname = os.path.join( self.insar.offsetsDirname, self.insar.azimuthRubbersheetFilename)
else:
print('Using refined offsets for resampling sub-bands')
azoffname = os.path.join( self.insar.offsetsDirname, self.insar.azimuthOffsetFilename)
if self.doRubbersheetingRange:
print('Using rubber in range sheeted offsets for resampling sub-bands')
rgoffname = os.path.join( self.insar.offsetsDirname, self.insar.rangeRubbersheetFilename)
else:
print('Using refined offsets for resampling sub-bands')
rgoffname = os.path.join( self.insar.offsetsDirname, self.insar.rangeOffsetFilename)
# ****************** End of Modification
# rgoffname = os.path.join( self.insar.offsetsDirname, self.insar.rangeOffsetFilename)
azpoly = self.insar.loadProduct( os.path.join(self.insar.misregDirname, self.insar.misregFilename) + '_az.xml')
rgpoly = self.insar.loadProduct( os.path.join(self.insar.misregDirname, self.insar.misregFilename) + '_rg.xml')
@ -124,7 +144,7 @@ def runResampleSubbandSlc(self, misreg=False):
wvlL = self.insar.lowBandRadarWavelength
coregDir = os.path.join(self.insar.coregDirname, self.insar.lowBandSlcDirname)
lowbandCoregFilename = resampleSlc(masterFrame, slaveFrame, imageSlc2, wvlL, coregDir,
lowbandCoregFilename = resampleSlc(self,masterFrame, slaveFrame, imageSlc2, wvlL, coregDir,
azoffname, rgoffname, azpoly=azpoly, rgpoly=rgpoly,misreg=False)
imageSlc2 = os.path.join(self.insar.splitSpectrumDirname, self.insar.highBandSlcDirname,
@ -132,7 +152,7 @@ def runResampleSubbandSlc(self, misreg=False):
wvlH = self.insar.highBandRadarWavelength
coregDir = os.path.join(self.insar.coregDirname, self.insar.highBandSlcDirname)
highbandCoregFilename = resampleSlc(masterFrame, slaveFrame, imageSlc2, wvlH, coregDir,
highbandCoregFilename = resampleSlc(self,masterFrame, slaveFrame, imageSlc2, wvlH, coregDir,
azoffname, rgoffname, azpoly=azpoly, rgpoly=rgpoly, misreg=False)
self.insar.lowBandSlc2 = lowbandCoregFilename

View File

@ -168,6 +168,7 @@ def runRubbersheet(self):
# filtAzOffsetFile to it.
resampleOffset(filtAzOffsetFile, geometryAzimuthOffset, sheetOffset)
print("I'm here")
return None

View File

@ -0,0 +1,276 @@
#
# Author: Heresh Fattahi
# Copyright 2017
#
# Modified by V. Brancato
# Included offset filtering with no SNR
#
import isce
import isceobj
from osgeo import gdal
from scipy import ndimage
from astropy.convolution import convolve
import numpy as np
import os
def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
# Masking the offsets with a data-based approach
# Open the offsets
ds = gdal.Open(denseOffsetFile+'.vrt',gdal.GA_ReadOnly)
off_az = ds.GetRasterBand(1).ReadAsArray()
off_rg = ds.GetRasterBand(2).ReadAsArray()
ds = None
# Remove missing values from ampcor
off_rg[np.where(off_rg < -9999)]=0
off_az[np.where(off_az < -9999)]=0
# Store the offsets in a complex variable
off = off_rg + 1j*off_az
# Mask the azimuth offsets based on the MAD
mask = off_masking(off,filterSize,thre=3)
xoff_masked = np.ma.array(off.real,mask=mask)
yoff_masked = np.ma.array(off.imag,mask=mask)
# Delete unused variables
mask = None
off = None
# Remove residual noisy spots with a median filter on the azimuth offmap
yoff_masked.mask = yoff_masked.mask | \
(ndimage.median_filter(xoff_masked.filled(fill_value=0),3) == 0) | \
(ndimage.median_filter(yoff_masked.filled(fill_value=0),3) == 0)
# Fill the data by iteratively using smoothed values
data = yoff_masked.data
data[yoff_masked.mask]=np.nan
off_az_filled = fill_with_smoothed(data,filterSize)
# Apply median filter to smooth the azimuth offset map
off_az_filled = ndimage.median_filter(off_az_filled,filterSize)
# Save the filtered offsets
length, width = off_az_filled.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
off_az_filled.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return
def off_masking(off,filterSize,thre=2):
# Define the mask to fill the offsets
vram = ndimage.median_filter(off.real, filterSize)
vazm = ndimage.median_filter(off.imag, filterSize)
mask = (np.abs(off.real-vram) > thre) | (np.abs(off.imag-vazm) > thre) | (off.imag == 0) | (off.real == 0)
return mask
def fill(data, invalid=None):
"""
Replace the value of invalid 'data' cells (indicated by 'invalid')
by the value of the nearest valid data cell
Input:
data: numpy array of any dimension
invalid: a binary array of same shape as 'data'.
data value are replaced where invalid is True
If None (default), use: invalid = np.isnan(data)
Output:
Return a filled array.
"""
if invalid is None: invalid = np.isnan(data)
ind = ndimage.distance_transform_edt(invalid,
return_distances=False,
return_indices=True)
return data[tuple(ind)]
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
#masking and Filtering
##Read in the offset file
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
Offset = ds.GetRasterBand(band).ReadAsArray()
ds = None
##Read in the SNR file
ds = gdal.Open(snrFile + '.vrt', gdal.GA_ReadOnly)
snr = ds.GetRasterBand(1).ReadAsArray()
ds = None
# Masking the dense offsets based on SNR
print ('masking the dense offsets with SNR threshold: ', snrThreshold)
Offset[snr<snrThreshold]=np.nan
# Fill the masked region using valid neighboring pixels
Offset = fill(Offset)
############
# Median filtering the masked offsets
print ('Filtering with median filter with size : ', filterSize)
Offset = ndimage.median_filter(Offset, size=filterSize)
length, width = Offset.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
Offset.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return None
def fill_with_smoothed(off,filterSize):
off_2filt=np.copy(off)
kernel = np.ones((filterSize,filterSize),np.float32)/(filterSize*filterSize)
loop = 0
cnt2=1
while (cnt2!=0 & loop<100):
loop += 1
idx2= np.isnan(off_2filt)
cnt2 = np.sum(np.count_nonzero(np.isnan(off_2filt)))
print(cnt2)
if cnt2 != 0:
off_filt= convolve(off_2filt,kernel,boundary='extend',nan_treatment='interpolate')
off_2filt[idx2]=off_filt[idx2]
idx3 = np.where(off_filt == 0)
off_2filt[idx3]=np.nan
off_filt=None
return off_2filt
def resampleOffset(maskedFiltOffset, geometryOffset, outName):
'''
Oversample offset and add.
'''
from imageMath import IML
import logging
resampledOffset = maskedFiltOffset + ".resampled"
inimg = isceobj.createImage()
inimg.load(geometryOffset + '.xml')
length = inimg.getLength()
width = inimg.getWidth()
###Currently making the assumption that top left of dense offsets and interfeorgrams are the same.
###This is not true for now. We need to update DenseOffsets to have the ability to have same top left
###As the input images. Once that is implemente, the math here should all be consistent.
###However, this is not too far off since the skip for doing dense offsets is generally large.
###The offset is not too large to worry about right now. If the skip is decreased, this could be an issue.
print('oversampling the filtered and masked offsets to the width and length:', width, ' ', length )
cmd = 'gdal_translate -of ENVI -ot Float64 -outsize ' + str(width) + ' ' + str(length) + ' ' + maskedFiltOffset + '.vrt ' + resampledOffset
print(cmd)
os.system(cmd)
img = isceobj.createImage()
img.setFilename(resampledOffset)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
###Adding the geometry offset and oversampled offset
geomoff = IML.mmapFromISCE(geometryOffset, logging)
osoff = IML.mmapFromISCE(resampledOffset, logging)
fid = open(outName, 'w')
for ll in range(length):
val = geomoff.bands[0][ll,:] + osoff.bands[0][ll,:]
val.tofile(fid)
fid.close()
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
return None
def runRubbersheetAzimuth(self):
if not self.doRubbersheetingAzimuth:
print('Rubber sheeting in azimuth not requested ... skipping')
return
# denseOffset file name computeed from cross-correlation
denseOffsetFile = os.path.join(self.insar.denseOffsetsDirname , self.insar.denseOffsetFilename)
snrFile = denseOffsetFile + "_snr.bil"
denseOffsetFile = denseOffsetFile + ".bil"
# we want the azimuth offsets only which are the first band
band = [1]
snrThreshold = self.rubberSheetSNRThreshold
filterSize = self.rubberSheetFilterSize
filtAzOffsetFile = os.path.join(self.insar.denseOffsetsDirname, self._insar.filtAzimuthOffsetFilename)
# masking and median filtering the dense offsets
if not self.doRubbersheetingRange:
print('Rubber sheeting in range is off, filtering the offsets with a SNR-based mask')
mask_filter(denseOffsetFile, snrFile, band[0], snrThreshold, filterSize, filtAzOffsetFile)
else:
print('Rubber sheeting in range is on, filtering the offsets with data-based mask')
mask_filterNoSNR(denseOffsetFile, filterSize, filtAzOffsetFile)
# azimuth offsets computed from geometry
offsetsDir = self.insar.offsetsDirname
geometryAzimuthOffset = os.path.join(offsetsDir, self.insar.azimuthOffsetFilename)
sheetOffset = os.path.join(offsetsDir, self.insar.azimuthRubbersheetFilename)
# oversampling the filtAzOffsetFile to the same size of geometryAzimuthOffset
# and then update the geometryAzimuthOffset by adding the oversampled
# filtAzOffsetFile to it.
resampleOffset(filtAzOffsetFile, geometryAzimuthOffset, sheetOffset)
return None

View File

@ -0,0 +1,279 @@
#
# Author: Heresh Fattahi
# Copyright 2017
#
# Modified by V. Brancato (10.12.2019)
# Including offset filtering with no SNR masking
#
import isce
import isceobj
from osgeo import gdal
from scipy import ndimage
import numpy as np
import os
from astropy.convolution import convolve
def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
# Masking the offsets with a data-based approach
# Open the offsets
ds = gdal.Open(denseOffsetFile+'.vrt',gdal.GA_ReadOnly)
off_az = ds.GetRasterBand(1).ReadAsArray()
off_rg = ds.GetRasterBand(2).ReadAsArray()
ds = None
# Remove values reported as missing data (no value data from ampcor)
off_rg[np.where(off_rg < -9999)]=0
off_az[np.where(off_az < -9999)]=0
# Store the offsets in a complex variable
off = off_rg + 1j*off_az
# Mask the offset based on MAD
mask = off_masking(off,filterSize,thre=3)
xoff_masked = np.ma.array(off.real,mask=mask)
yoff_masked = np.ma.array(off.imag,mask=mask)
# Delete not used variables
mask = None
off = None
# Remove residual noisy spots with a median filter on the range offmap
xoff_masked.mask = xoff_masked.mask | \
(ndimage.median_filter(xoff_masked.filled(fill_value=0),3) == 0) | \
(ndimage.median_filter(yoff_masked.filled(fill_value=0),3) == 0)
# Fill the range offset map iteratively with smoothed values
data = xoff_masked.data
data[xoff_masked.mask]=np.nan
off_rg_filled = fill_with_smoothed(data,filterSize)
# Apply the median filter on the offset
off_rg_filled = ndimage.median_filter(off_rg_filled,filterSize)
# Save the filtered offsets
length, width = off_rg_filled.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
off_rg_filled.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return
def off_masking(off,filterSize,thre=2):
vram = ndimage.median_filter(off.real, filterSize)
vazm = ndimage.median_filter(off.imag, filterSize)
mask = (np.abs(off.real-vram) > thre) | (np.abs(off.imag-vazm) > thre) | (off.imag == 0) | (off.real == 0)
return mask
def fill(data, invalid=None):
"""
Replace the value of invalid 'data' cells (indicated by 'invalid')
by the value of the nearest valid data cell
Input:
data: numpy array of any dimension
invalid: a binary array of same shape as 'data'.
data value are replaced where invalid is True
If None (default), use: invalid = np.isnan(data)
Output:
Return a filled array.
"""
if invalid is None: invalid = np.isnan(data)
ind = ndimage.distance_transform_edt(invalid,
return_distances=False,
return_indices=True)
return data[tuple(ind)]
def fill_with_smoothed(off,filterSize):
off_2filt=np.copy(off)
kernel = np.ones((filterSize,filterSize),np.float32)/(filterSize*filterSize)
loop = 0
cnt2=1
while (cnt2 !=0 & loop<100):
loop += 1
idx2= np.isnan(off_2filt)
cnt2 = np.sum(np.count_nonzero(np.isnan(off_2filt)))
print(cnt2)
if cnt2 != 0:
off_filt= convolve(off_2filt,kernel,boundary='extend',nan_treatment='interpolate')
off_2filt[idx2]=off_filt[idx2]
idx3 = np.where(off_filt == 0)
off_2filt[idx3]=np.nan
off_filt=None
return off_2filt
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
#masking and Filtering
##Read in the offset file
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
Offset = ds.GetRasterBand(band).ReadAsArray()
ds = None
##Read in the SNR file
ds = gdal.Open(snrFile + '.vrt', gdal.GA_ReadOnly)
snr = ds.GetRasterBand(1).ReadAsArray()
ds = None
# Masking the dense offsets based on SNR
print ('masking the dense offsets with SNR threshold: ', snrThreshold)
Offset[snr<snrThreshold]=np.nan
# Fill the masked region using valid neighboring pixels
Offset = fill(Offset)
############
# Median filtering the masked offsets
print ('Filtering with median filter with size : ', filterSize)
Offset = ndimage.median_filter(Offset, size=filterSize)
length, width = Offset.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
Offset.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return None
def resampleOffset(maskedFiltOffset, geometryOffset, outName):
'''
Oversample offset and add.
'''
from imageMath import IML
import logging
resampledOffset = maskedFiltOffset + ".resampled"
inimg = isceobj.createImage()
inimg.load(geometryOffset + '.xml')
length = inimg.getLength()
width = inimg.getWidth()
###Currently making the assumption that top left of dense offsets and interfeorgrams are the same.
###This is not true for now. We need to update DenseOffsets to have the ability to have same top left
###As the input images. Once that is implemente, the math here should all be consistent.
###However, this is not too far off since the skip for doing dense offsets is generally large.
###The offset is not too large to worry about right now. If the skip is decreased, this could be an issue.
print('oversampling the filtered and masked offsets to the width and length:', width, ' ', length )
cmd = 'gdal_translate -of ENVI -ot Float64 -outsize ' + str(width) + ' ' + str(length) + ' ' + maskedFiltOffset + '.vrt ' + resampledOffset
print(cmd)
os.system(cmd)
img = isceobj.createImage()
img.setFilename(resampledOffset)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
###Adding the geometry offset and oversampled offset
geomoff = IML.mmapFromISCE(geometryOffset, logging)
osoff = IML.mmapFromISCE(resampledOffset, logging)
fid = open(outName, 'w')
for ll in range(length):
val = geomoff.bands[0][ll,:] + osoff.bands[0][ll,:]
val.tofile(fid)
fid.close()
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
return None
def runRubbersheetRange(self):
if not self.doRubbersheetingRange:
print('Rubber sheeting in azimuth not requested ... skipping')
return
# denseOffset file name computeed from cross-correlation
denseOffsetFile = os.path.join(self.insar.denseOffsetsDirname , self.insar.denseOffsetFilename)
snrFile = denseOffsetFile + "_snr.bil"
denseOffsetFile = denseOffsetFile + ".bil"
# we want the range offsets only which are the first band
band = [2]
snrThreshold = self.rubberSheetSNRThreshold
filterSize = self.rubberSheetFilterSize
filtRgOffsetFile = os.path.join(self.insar.denseOffsetsDirname, self._insar.filtRangeOffsetFilename)
# masking and median filtering the dense offsets
if not self.doRubbersheetingRange:
print('Rubber sheeting in range is off, applying SNR-masking for the offsets maps')
mask_filter(denseOffsetFile, snrFile, band[0], snrThreshold, filterSize, filtRgOffsetFile)
else:
print('Rubber sheeting in range is on, applying a data-based offsets-masking')
mask_filterNoSNR(denseOffsetFile,filterSize,filtRgOffsetFile)
# range offsets computed from geometry
offsetsDir = self.insar.offsetsDirname
geometryRangeOffset = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
RgsheetOffset = os.path.join(offsetsDir, self.insar.rangeRubbersheetFilename)
# oversampling the filtRgOffsetFile to the same size of geometryRangeOffset
# and then update the geometryRangeOffset by adding the oversampled
# filtRgOffsetFile to it.
resampleOffset(filtRgOffsetFile, geometryRangeOffset, RgsheetOffset)
return None

View File

@ -54,7 +54,7 @@ class snaphu(Component):
self.azimuthLooks = obj.insar.topo.numberAzimuthLooks
azres = obj.insar.masterFrame.platform.antennaLength/2.0
azfact = obj.insar.topo.numberAzimuthLooks *azres / obj.insar.topo.azimuthSpacing
azfact = azres / obj.insar.topo.azimuthSpacing
rBW = obj.insar.masterFrame.instrument.pulseLength * obj.insar.masterFrame.instrument.chirpSlope
rgres = abs(SPEED_OF_LIGHT / (2.0 * rBW))

View File

@ -54,7 +54,7 @@ class snaphu_mcf(Component):
self.azimuthLooks = obj.insar.topo.numberAzimuthLooks
azres = obj.insar.masterFrame.platform.antennaLength/2.0
azfact = obj.insar.topo.numberAzimuthLooks *azres / obj.insar.topo.azimuthSpacing
azfact = azres / obj.insar.topo.azimuthSpacing
rBW = obj.insar.masterFrame.instrument.pulseLength * obj.insar.masterFrame.instrument.chirpSlope
rgres = abs(SPEED_OF_LIGHT / (2.0 * rBW))

View File

@ -49,7 +49,7 @@ if envGPUampcor['GPU_ACC_ENABLED']:
build_base += "-ccbin " + envGPUampcor['NVCC_CCBIN'] + " "
else:
print('Assuming default system compiler for nvcc.')
build_base += "-arch=sm_35 -shared -Xcompiler -fPIC -O3 "
build_base += "-shared -Xcompiler -fPIC -O3 "
build_cmd = build_base + "-dc -m64 -o $TARGET -c $SOURCE"
built_path = os.path.join(build, 'gpu-ampcor.o')
linked_path = os.path.join(build, 'gpu-ampcor-linked.o')

View File

@ -1,2 +1,2 @@
nvcc -arch=sm_35 -Xcompiler -fPIC -o gpu-topo.o -c Topo.cu
nvcc -Xcompiler -fPIC -o gpu-topo.o -c Topo.cu
cp -f gpu-topo.o ..

View File

@ -1,4 +1,4 @@
#!/usr/bin/env python
#!/usr/bin/env python3
import os
@ -28,7 +28,7 @@ if envPyCuAmpcor['GPU_ACC_ENABLED']:
if not os.path.exists(initFile):
with open(initFile, 'w') as fout:
fout.write("#!/usr/bin/env python")
fout.write("#!/usr/bin/env python3")
listFiles = [initFile]
envPyCuAmpcor.Install(install, listFiles)

View File

@ -0,0 +1,63 @@
#!/usr/bin/env python3
#
# Test program to run ampcor with GPU
# For two GeoTiff images
#
import argparse
import numpy as np
from PyCuAmpcor import PyCuAmpcor
def main():
'''
main program
'''
objOffset = PyCuAmpcor() # create the processor
objOffset.algorithm = 0 # cross-correlation method 0=freq 1=time
objOffset.deviceID = 0 # GPU device id to be used
objOffset.nStreams = 2 # cudaStreams; multiple streams to overlap data transfer with gpu calculations
objOffset.masterImageName = "master.tif"
objOffset.masterImageHeight = 16480 # RasterYSize
objOffset.masterImageWidth = 17000 # RasterXSize
objOffset.slaveImageName = "slave.tif"
objOffset.slaveImageHeight = 16480
objOffset.slaveImageWidth = 17000
objOffset.windowSizeWidth = 64 # template window size
objOffset.windowSizeHeight = 64
objOffset.halfSearchRangeDown = 20 # search range
objOffset.halfSearchRangeAcross = 20
objOffset.derampMethod = 1 # deramping for complex signal, set to 1 for real images
objOffset.skipSampleDown = 128 # strides between windows
objOffset.skipSampleAcross = 64
# gpu processes several windows in one batch/Chunk
# total windows in Chunk = numberWindowDownInChunk*numberWindowAcrossInChunk
# the max number of windows depending on gpu memory and type
objOffset.numberWindowDownInChunk = 1
objOffset.numberWindowAcrossInChunk = 10
objOffset.corrSurfaceOverSamplingFactor = 8 # oversampling factor for correlation surface
objOffset.corrSurfaceZoomInWindow = 16 # area in correlation surface to be oversampled
objOffset.corrSufaceOverSamplingMethod = 1 # fft or sinc oversampler
objOffset.useMmap = 1 # default using memory map as buffer, if having troubles, set to 0
objOffset.mmapSize = 1 # mmap or buffer size used for transferring data from file to gpu, in GB
objOffset.numberWindowDown = 40 # number of windows to be processed
objOffset.numberWindowAcross = 100
# if to process the whole image; some math needs to be done
# margin = 0 # margins to be neglected
#objOffset.numberWindowDown = (objOffset.slaveImageHeight - 2*margin - 2*objOffset.halfSearchRangeDown - objOffset.windowSizeHeight) // objOffset.skipSampleDown
#objOffset.numberWindowAcross = (objOffset.slaveImageWidth - 2*margin - 2*objOffset.halfSearchRangeAcross - objOffset.windowSizeWidth) // objOffset.skipSampleAcross
objOffset.setupParams()
objOffset.masterStartPixelDownStatic = objOffset.halfSearchRangeDown # starting pixel offset
objOffset.masterStartPixelAcrossStatic = objOffset.halfSearchRangeDown
objOffset.setConstantGrossOffset(0, 0) # gross offset between master and slave images
objOffset.checkPixelInImageRange() # check whether there is something wrong with
objOffset.runAmpcor()
if __name__ == '__main__':

View File

@ -7,8 +7,8 @@
import argparse
import numpy as np
#from PyCuAmpcor import PyCuAmpcor
from isce.components.contrib.PyCuAmpcor import PyCuAmpcor
from PyCuAmpcor import PyCuAmpcor
def main():
'''
@ -20,10 +20,10 @@ def main():
objOffset.algorithm = 0
objOffset.deviceID = 0 # -1:let system find the best GPU
objOffset.nStreams = 2 #cudaStreams
objOffset.masterImageName = "master.slc"
objOffset.masterImageName = "20131213.slc.vrt"
objOffset.masterImageHeight = 43008
objOffset.masterImageWidth = 24320
objOffset.slaveImageName = "slave.slc"
objOffset.slaveImageName = "20131221.slc.vrt"
objOffset.slaveImageHeight = 43008
objOffset.slaveImageWidth = 24320
objOffset.windowSizeWidth = 64
@ -40,6 +40,7 @@ def main():
objOffset.corrSurfaceOverSamplingFactor = 8
objOffset.corrSurfaceZoomInWindow = 16
objOffset.corrSufaceOverSamplingMethod = 1
objOffset.useMmap = 1
objOffset.mmapSize = 8
objOffset.setupParams()

View File

@ -11,10 +11,10 @@ def main():
objOffset = PyCuAmpcor()
#step 1 set constant parameters
objOffset.masterImageName = "master.slc"
objOffset.masterImageName = "master.slc.vrt"
objOffset.masterImageHeight = 128
objOffset.masterImageWidth = 128
objOffset.slaveImageName = "slave.slc"
objOffset.slaveImageName = "slave.slc.vrt"
objOffset.masterImageHeight = 128
objOffset.masterImageWidth = 128
objOffset.skipSampleDown = 2

View File

@ -0,0 +1,154 @@
#include "GDALImage.h"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <assert.h>
#include <cublas_v2.h>
#include "cudaError.h"
#include <errno.h>
#include <unistd.h>
/**
* \brief Constructor
*
* @param filename a std::string with the raster image file name
*/
GDALImage::GDALImage(std::string filename, int band, int cacheSizeInGB, int useMmap)
: _useMmap(useMmap)
{
// open the file as dataset
_poDataset = (GDALDataset *) GDALOpen(filename.c_str(), GA_ReadOnly );
// if something is wrong, throw an exception
// GDAL reports the error message
if(!_poDataset)
throw;
// check the band info
int count = _poDataset->GetRasterCount();
if(band > count)
{
std::cout << "The desired band " << band << " is greated than " << count << " bands available";
throw;
}
// get the desired band
_poBand = _poDataset->GetRasterBand(band);
if(!_poBand)
throw;
// get the width(x), and height(y)
_width = _poBand->GetXSize();
_height = _poBand->GetYSize();
_dataType = _poBand->GetRasterDataType();
// determine the image type
_isComplex = GDALDataTypeIsComplex(_dataType);
// determine the pixel size in bytes
_pixelSize = GDALGetDataTypeSize(_dataType);
_bufferSize = 1024*1024*cacheSizeInGB;
// checking whether using memory map
if(_useMmap) {
char **papszOptions = NULL;
// if cacheSizeInGB = 0, use default
// else set the option
if(cacheSizeInGB > 0)
papszOptions = CSLSetNameValue( papszOptions,
"CACHE_SIZE",
std::to_string(_bufferSize).c_str());
// space between two lines
GIntBig pnLineSpace;
// set up the virtual mem buffer
_poBandVirtualMem = GDALGetVirtualMemAuto(
static_cast<GDALRasterBandH>(_poBand),
GF_Read,
&_pixelSize,
&pnLineSpace,
papszOptions);
// check it
if(!_poBandVirtualMem)
throw;
// get the starting pointer
_memPtr = CPLVirtualMemGetAddr(_poBandVirtualMem);
}
else { // use a buffer
checkCudaErrors(cudaMallocHost((void **)&_memPtr, _bufferSize));
}
// make sure memPtr is not Null
if (!_memPtr)
throw;
// all done
}
/// load a tile of data h_tile x w_tile from CPU (mmap) to GPU
/// @param dArray pointer for array in device memory
/// @param h_offset Down/Height offset
/// @param w_offset Across/Width offset
/// @param h_tile Down/Height tile size
/// @param w_tile Across/Width tile size
/// @param stream CUDA stream for copying
void GDALImage::loadToDevice(void *dArray, size_t h_offset, size_t w_offset, size_t h_tile, size_t w_tile, cudaStream_t stream)
{
size_t tileStartOffset = (h_offset*_width + w_offset)*_pixelSize;
char * startPtr = (char *)_memPtr ;
startPtr += tileStartOffset;
// @note
// We assume down/across directions as rows/cols. Therefore, SLC mmap and device array are both row major.
// cuBlas assumes both source and target arrays are column major.
// To use cublasSetMatrix, we need to switch w_tile/h_tile for rows/cols
// checkCudaErrors(cublasSetMatrixAsync(w_tile, h_tile, sizeof(float2), startPtr, width, dArray, w_tile, stream));
if (_useMmap)
checkCudaErrors(cudaMemcpy2DAsync(dArray, w_tile*_pixelSize, startPtr, _width*_pixelSize,
w_tile*_pixelSize, h_tile, cudaMemcpyHostToDevice,stream));
else {
// get the total tile size in bytes
size_t tileSize = h_tile*w_tile*_pixelSize;
// if the size is bigger than existing buffer, reallocate
if (tileSize > _bufferSize) {
// maybe we need to make it to fit the pagesize
_bufferSize = tileSize;
checkCudaErrors(cudaFree(_memPtr));
checkCudaErrors(cudaMallocHost((void **)&_memPtr, _bufferSize));
}
// copy from file to buffer
CPLErr err = _poBand->RasterIO(GF_Read, //eRWFlag
w_offset, h_offset, //nXOff, nYOff
w_tile, h_tile, // nXSize, nYSize
_memPtr, // pData
w_tile*h_tile, 1, // nBufXSize, nBufYSize
_dataType, //eBufType
0, 0, //nPixelSpace, nLineSpace in pData
NULL //psExtraArg extra resampling callback
);
if(err != CE_None)
throw;
// copy from buffer to gpu
checkCudaErrors(cudaMemcpyAsync(dArray, _memPtr, tileSize, cudaMemcpyHostToDevice, stream));
}
}
GDALImage::~GDALImage()
{
// free the virtual memory
CPLVirtualMemFree(_poBandVirtualMem),
// free the GDAL Dataset, close the file
delete _poDataset;
}
// end of file

View File

@ -0,0 +1,79 @@
// -*- c++ -*-
/**
* \brief Class for an image described GDAL vrt
*
* only complex (pixelOffset=8) or real(pixelOffset=4) images are supported, such as SLC and single-precision TIFF
*/
#ifndef __GDALIMAGE_H
#define __GDALIMAGE_H
#include <cublas_v2.h>
#include <string>
#include <gdal/gdal_priv.h>
#include <gdal/cpl_conv.h>
class GDALImage{
public:
using size_t = std::size_t;
private:
size_t _fileSize;
int _height;
int _width;
// buffer pointer
void * _memPtr = NULL;
int _pixelSize; //in bytes
int _isComplex;
size_t _bufferSize;
int _useMmap;
GDALDataType _dataType;
CPLVirtualMem * _poBandVirtualMem = NULL;
GDALDataset * _poDataset = NULL;
GDALRasterBand * _poBand = NULL;
public:
GDALImage() = delete;
GDALImage(std::string fn, int band=1, int cacheSizeInGB=0, int useMmap=1);
void * getmemPtr()
{
return(_memPtr);
}
size_t getFileSize()
{
return (_fileSize);
}
size_t getHeight() {
return (_height);
}
size_t getWidth()
{
return (_width);
}
int getPixelSize()
{
return _pixelSize;
}
bool isComplex()
{
return _isComplex;
}
void loadToDevice(void *dArray, size_t h_offset, size_t w_offset, size_t h_tile, size_t w_tile, cudaStream_t stream);
~GDALImage();
};
#endif //__GDALIMAGE_H

View File

@ -4,22 +4,23 @@ LDFLAGS = -lcuda -lcudart -lcufft -lcublas
CXXFLAGS = -std=c++11 -fpermissive -fPIC -shared
NVCCFLAGS = -ccbin g++ -m64 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_60,code=sm_60 \
-Xcompiler -fPIC -shared -Wno-deprecated-gpu-targets \
-ftz=false -prec-div=true -prec-sqrt=true
CXX=g++
NVCC=nvcc
DEPS = cudaUtil.h cudaError.h cuArrays.h SlcImage.h cuAmpcorParameter.h
OBJS = SlcImage.o cuArrays.o cuArraysCopy.o cuArraysPadding.o cuOverSampler.o \
DEPS = cudaUtil.h cudaError.h cuArrays.h GDALImage.h cuAmpcorParameter.h
OBJS = GDALImage.o cuArrays.o cuArraysCopy.o cuArraysPadding.o cuOverSampler.o \
cuSincOverSampler.o cuDeramp.o cuOffset.o \
cuCorrNormalization.o cuAmpcorParameter.o cuCorrTimeDomain.o cuCorrFrequency.o \
cuAmpcorChunk.o cuAmpcorController.o cuEstimateStats.o
all: cuampcor
all: pyampcor
SlcImage.o: SlcImage.cu $(DEPS)
$(NVCC) $(NVCCFLAGS) -c -o $@ SlcImage.cu
GDALImage.o: GDALImage.cu $(DEPS)
$(NVCC) $(NVCCFLAGS) -c -o $@ GDALImage.cu
cuArrays.o: cuArrays.cu $(DEPS)
$(NVCC) $(NVCCFLAGS) -c -o $@ cuArrays.cu
@ -64,7 +65,7 @@ cuEstimateStats.o: cuEstimateStats.cu
$(NVCC) $(NVCCFLAGS) -c -o $@ cuEstimateStats.cu
cuampcor: $(OBJS)
pyampcor: $(OBJS)
rm -f PyCuAmpcor.cpp && python3 setup.py build_ext --inplace
clean:

View File

@ -62,7 +62,8 @@ cdef extern from "cuAmpcorParameter.h":
int slaveImageHeight ## slave image height
int slaveImageWidth ## slave image width
int mmapSizeInGB ## mmap buffer size in unit of Gigabytes
int useMmap ## whether to use mmap
int mmapSizeInGB ## mmap buffer size in unit of Gigabytes (if not mmmap, the buffer size)
## total number of chips/windows
int numberWindowDown ## number of total windows (down)
@ -103,6 +104,7 @@ cdef extern from "cuAmpcorParameter.h":
string grossOffsetImageName
string offsetImageName ## Output Offset fields filename
string snrImageName ## Output SNR filename
string covImageName ## Output COV filename
void setStartPixels(int*, int*, int*, int*)
void setStartPixels(int, int, int*, int*)
void setStartPixels(int, int, int, int)
@ -143,6 +145,12 @@ cdef class PyCuAmpcor(object):
def nStreams(self, int a):
self.c_cuAmpcor.param.nStreams = a
@property
def useMmap(self):
return self.c_cuAmpcor.param.useMmap
@useMmap.setter
def useMmap(self, int a):
self.c_cuAmpcor.param.useMmap = a
@property
def mmapSize(self):
return self.c_cuAmpcor.param.mmapSizeInGB
@mmapSize.setter
@ -324,6 +332,7 @@ cdef class PyCuAmpcor(object):
@offsetImageName.setter
def offsetImageName(self, str a):
self.c_cuAmpcor.param.offsetImageName = <string> a.encode()
@property
def snrImageName(self):
return self.c_cuAmpcor.param.snrImageName
@ -331,6 +340,13 @@ cdef class PyCuAmpcor(object):
def snrImageName(self, str a):
self.c_cuAmpcor.param.snrImageName = <string> a.encode()
@property
def covImageName(self):
return self.c_cuAmpcor.param.covImageName
@covImageName.setter
def covImageName(self, str a):
self.c_cuAmpcor.param.covImageName = <string> a.encode()
@property
def masterStartPixelDownStatic(self):
return self.c_cuAmpcor.param.masterStartPixelDown0

View File

@ -6,7 +6,7 @@ package = envPyCuAmpcor['PACKAGE']
project = envPyCuAmpcor['PROJECT']
build = envPyCuAmpcor['PRJ_LIB_DIR']
install = envPyCuAmpcor['PRJ_SCONS_INSTALL'] + '/' + package + '/' + project
listFiles = ['SlcImage.cu', 'cuArrays.cu', 'cuArraysCopy.cu',
listFiles = ['GDALImage.cu', 'cuArrays.cu', 'cuArraysCopy.cu',
'cuArraysPadding.cu', 'cuOverSampler.cu',
'cuSincOverSampler.cu', 'cuDeramp.cu',
'cuOffset.cu', 'cuCorrNormalization.cu',

View File

@ -33,22 +33,38 @@ void cuAmpcorChunk::run(int idxDown_, int idxAcross_)
cuCorrTimeDomain(r_masterBatchRaw, r_slaveBatchRaw, r_corrBatchRaw, stream); //time domain cross correlation
}
cuCorrNormalize(r_masterBatchRaw, r_slaveBatchRaw, r_corrBatchRaw, stream);
//find the maximum location of none-oversampled correlation
cuArraysMaxloc2D(r_corrBatchRaw, offsetInit, stream);
// Estimate SNR (Minyan Zhong)
//std::cout<< "flag stats 1" <<std::endl;
//cuArraysCopyExtractCorr(r_corrBatchRaw, r_corrBatchZoomIn, i_corrBatchZoomInValid, offsetInit, stream);
// find the maximum location of none-oversampled correlation
// 41 x 41, if halfsearchrange=20
//cuArraysMaxloc2D(r_corrBatchRaw, offsetInit, stream);
cuArraysMaxloc2D(r_corrBatchRaw, offsetInit, r_maxval, stream);
//std::cout<< "flag stats 2" <<std::endl;
//cuArraysSumCorr(r_corrBatchZoomIn, i_corrBatchZoomInValid, r_corrBatchSum, i_corrBatchValidCount, stream);
offsetInit->outputToFile("offsetInit1", stream);
//std::cout<< "flag stats 3" <<std::endl;
//cuEstimateSnr(r_corrBatchSum, i_corrBatchValidCount, r_maxval, r_snrValue, stream);
// Estimation of statistics
// Author: Minyan Zhong
// Extraction of correlation surface around the peak
cuArraysCopyExtractCorr(r_corrBatchRaw, r_corrBatchRawZoomIn, i_corrBatchZoomInValid, offsetInit, stream);
//
cudaDeviceSynchronize();
// debug: output the intermediate results
r_maxval->outputToFile("r_maxval",stream);
r_corrBatchRaw->outputToFile("r_corrBatchRaw",stream);
r_corrBatchRawZoomIn->outputToFile("r_corrBatchRawZoomIn",stream);
i_corrBatchZoomInValid->outputToFile("i_corrBatchZoomInValid",stream);
// Summation of correlation and data point values
cuArraysSumCorr(r_corrBatchRawZoomIn, i_corrBatchZoomInValid, r_corrBatchSum, i_corrBatchValidCount, stream);
// SNR
cuEstimateSnr(r_corrBatchSum, i_corrBatchValidCount, r_maxval, r_snrValue, stream);
// Variance
// cuEstimateVariance(r_corrBatchRaw, offsetInit, r_maxval, r_covValue, stream);
// Using the approximate estimation to adjust slave image (half search window size becomes only 4 pixels)
//offsetInit->debuginfo(stream);
// determine the starting pixel to extract slave images around the max location
cuDetermineSlaveExtractOffset(offsetInit,
@ -109,12 +125,21 @@ void cuAmpcorChunk::run(int idxDown_, int idxAcross_)
//offsetZoomIn->debuginfo(stream);
//offsetFinal->debuginfo(stream);
// Do insertion.
// Offsetfields.
cuArraysCopyInsert(offsetFinal, offsetImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
// Minyan Zhong
//cuArraysCopyInsert(corrMaxValue, snrImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
//cuArraysCopyInsert(r_snrValue, snrImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
// Debugging matrix.
cuArraysCopyInsert(r_corrBatchSum, floatImage1, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
cuArraysCopyInsert(i_corrBatchValidCount, intImage1, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
// Old: save max correlation coefficients.
//cuArraysCopyInsert(corrMaxValue, snrImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
// New: save SNR
cuArraysCopyInsert(r_snrValue, snrImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
// Variance.
cuArraysCopyInsert(r_covValue, covImage, idxDown_*param->numberWindowDownInChunk, idxAcross_*param->numberWindowAcrossInChunk,stream);
}
void cuAmpcorChunk::setIndex(int idxDown_, int idxAcross_)
@ -162,19 +187,37 @@ void cuAmpcorChunk::getRelativeOffset(int *rStartPixel, const int *oStartPixel,
void cuAmpcorChunk::loadMasterChunk()
{
//load a chunk from mmap to gpu
int startD = param->masterChunkStartPixelDown[idxChunk];
int startA = param->masterChunkStartPixelAcross[idxChunk];
int height = param->masterChunkHeight[idxChunk];
int width = param->masterChunkWidth[idxChunk];
masterImage->loadToDevice(c_masterChunkRaw->devData, startD, startA, height, width, stream);
std::cout << "debug load master: " << startD << " " << startA << " " << height << " " << width << "\n";
//copy the chunk to a batch of images format (nImages, height, width)
//use cpu for some simple math
// we first load the whole chunk of image from cpu to a gpu buffer c(r)_masterChunkRaw
// then copy to a batch of windows with (nImages, height, width) (leading dimension on the right)
// get the chunk size to be loaded to gpu
int startD = param->masterChunkStartPixelDown[idxChunk]; //start pixel down (along height)
int startA = param->masterChunkStartPixelAcross[idxChunk]; // start pixel across (along width)
int height = param->masterChunkHeight[idxChunk]; // number of pixels along height
int width = param->masterChunkWidth[idxChunk]; // number of pixels along width
//use cpu to compute the starting positions for each window
getRelativeOffset(ChunkOffsetDown->hostData, param->masterStartPixelDown, param->masterChunkStartPixelDown[idxChunk]);
// copy the positions to gpu
ChunkOffsetDown->copyToDevice(stream);
// same for the across direction
getRelativeOffset(ChunkOffsetAcross->hostData, param->masterStartPixelAcross, param->masterChunkStartPixelAcross[idxChunk]);
ChunkOffsetAcross->copyToDevice(stream);
// check whether the image is complex (e.g., SLC) or real( e.g. TIFF)
if(masterImage->isComplex())
{
// allocate a gpu buffer to load data from cpu/file
// try allocate/deallocate the buffer on the fly to save gpu memory 07/09/19
c_masterChunkRaw = new cuArrays<float2> (param->maxMasterChunkHeight, param->maxMasterChunkWidth);
c_masterChunkRaw->allocate();
// load the data from cpu
masterImage->loadToDevice((void *)c_masterChunkRaw->devData, startD, startA, height, width, stream);
//std::cout << "debug load master: " << startD << " " << startA << " " << height << " " << width << "\n";
//copy the chunk to a batch format (nImages, height, width)
// if derampMethod = 0 (no deramp), take amplitudes; otherwise, copy complex data
if(param->derampMethod == 0) {
cuArraysCopyToBatchAbsWithOffset(c_masterChunkRaw, param->masterChunkWidth[idxChunk],
@ -184,10 +227,41 @@ void cuAmpcorChunk::loadMasterChunk()
cuArraysCopyToBatchWithOffset(c_masterChunkRaw, param->masterChunkWidth[idxChunk],
c_masterBatchRaw, ChunkOffsetDown->devData, ChunkOffsetAcross->devData, stream);
}
// deallocate the gpu buffer
delete c_masterChunkRaw;
}
// if the image is real
else {
r_masterChunkRaw = new cuArrays<float> (param->maxMasterChunkHeight, param->maxMasterChunkWidth);
r_masterChunkRaw->allocate();
// load the data from cpu
masterImage->loadToDevice((void *)r_masterChunkRaw->devData, startD, startA, height, width, stream);
// copy the chunk (real) to a batch format (complex)
cuArraysCopyToBatchWithOffsetR2C(r_masterChunkRaw, param->masterChunkWidth[idxChunk],
c_masterBatchRaw, ChunkOffsetDown->devData, ChunkOffsetAcross->devData, stream);
// deallocate the gpu buffer
delete r_masterChunkRaw;
}
}
void cuAmpcorChunk::loadSlaveChunk()
{
//copy to a batch format (nImages, height, width)
getRelativeOffset(ChunkOffsetDown->hostData, param->slaveStartPixelDown, param->slaveChunkStartPixelDown[idxChunk]);
ChunkOffsetDown->copyToDevice(stream);
getRelativeOffset(ChunkOffsetAcross->hostData, param->slaveStartPixelAcross, param->slaveChunkStartPixelAcross[idxChunk]);
ChunkOffsetAcross->copyToDevice(stream);
if(slaveImage->isComplex())
{
c_slaveChunkRaw = new cuArrays<float2> (param->maxSlaveChunkHeight, param->maxSlaveChunkWidth);
c_slaveChunkRaw->allocate();
//load a chunk from mmap to gpu
slaveImage->loadToDevice(c_slaveChunkRaw->devData,
param->slaveChunkStartPixelDown[idxChunk],
@ -195,38 +269,60 @@ void cuAmpcorChunk::loadSlaveChunk()
param->slaveChunkHeight[idxChunk],
param->slaveChunkWidth[idxChunk],
stream);
//copy to a batch format (nImages, height, width)
getRelativeOffset(ChunkOffsetDown->hostData, param->slaveStartPixelDown, param->slaveChunkStartPixelDown[idxChunk]);
ChunkOffsetDown->copyToDevice(stream);
getRelativeOffset(ChunkOffsetAcross->hostData, param->slaveStartPixelAcross, param->slaveChunkStartPixelAcross[idxChunk]);
ChunkOffsetAcross->copyToDevice(stream);
if(param->derampMethod == 0) {
cuArraysCopyToBatchAbsWithOffset(c_slaveChunkRaw, param->slaveChunkWidth[idxChunk],
c_slaveBatchRaw, ChunkOffsetDown->devData, ChunkOffsetAcross->devData, stream);
}
else
{
else {
cuArraysCopyToBatchWithOffset(c_slaveChunkRaw, param->slaveChunkWidth[idxChunk],
c_slaveBatchRaw, ChunkOffsetDown->devData, ChunkOffsetAcross->devData, stream);
}
delete c_slaveChunkRaw;
}
else { //real image
//allocate the gpu buffer
r_slaveChunkRaw = new cuArrays<float> (param->maxSlaveChunkHeight, param->maxSlaveChunkWidth);
r_slaveChunkRaw->allocate();
//load a chunk from mmap to gpu
slaveImage->loadToDevice(r_slaveChunkRaw->devData,
param->slaveChunkStartPixelDown[idxChunk],
param->slaveChunkStartPixelAcross[idxChunk],
param->slaveChunkHeight[idxChunk],
param->slaveChunkWidth[idxChunk],
stream);
// convert to the batch format
cuArraysCopyToBatchWithOffsetR2C(r_slaveChunkRaw, param->slaveChunkWidth[idxChunk],
c_slaveBatchRaw, ChunkOffsetDown->devData, ChunkOffsetAcross->devData, stream);
delete r_slaveChunkRaw;
}
}
cuAmpcorChunk::cuAmpcorChunk(cuAmpcorParameter *param_, SlcImage *master_, SlcImage *slave_,
cuArrays<float2> *offsetImage_, cuArrays<float> *snrImage_, cudaStream_t stream_)
cuAmpcorChunk::cuAmpcorChunk(cuAmpcorParameter *param_, GDALImage *master_, GDALImage *slave_,
cuArrays<float2> *offsetImage_, cuArrays<float> *snrImage_, cuArrays<float3> *covImage_, cuArrays<int> *intImage1_, cuArrays<float> *floatImage1_, cudaStream_t stream_)
{
param = param_;
masterImage = master_;
slaveImage = slave_;
offsetImage = offsetImage_;
snrImage = snrImage_;
covImage = covImage_;
intImage1 = intImage1_;
floatImage1 = floatImage1_;
stream = stream_;
std::cout << "debug Chunk creator " << param->maxMasterChunkHeight << " " << param->maxMasterChunkWidth << "\n";
c_masterChunkRaw = new cuArrays<float2> (param->maxMasterChunkHeight, param->maxMasterChunkWidth);
c_masterChunkRaw->allocate();
// std::cout << "debug Chunk creator " << param->maxMasterChunkHeight << " " << param->maxMasterChunkWidth << "\n";
// try allocate/deallocate on the fly to save gpu memory 07/09/19
// c_masterChunkRaw = new cuArrays<float2> (param->maxMasterChunkHeight, param->maxMasterChunkWidth);
// c_masterChunkRaw->allocate();
c_slaveChunkRaw = new cuArrays<float2> (param->maxSlaveChunkHeight, param->maxSlaveChunkWidth);
c_slaveChunkRaw->allocate();
// c_slaveChunkRaw = new cuArrays<float2> (param->maxSlaveChunkHeight, param->maxSlaveChunkWidth);
// c_slaveChunkRaw->allocate();
ChunkOffsetDown = new cuArrays<int> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
ChunkOffsetDown->allocate();
@ -329,6 +425,54 @@ cuAmpcorChunk::cuAmpcorChunk(cuAmpcorParameter *param_, SlcImage *master_, SlcIm
corrMaxValue = new cuArrays<float> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
corrMaxValue->allocate();
// new arrays due to snr estimation
std::cout<< "corrRawZoomInHeight: " << param->corrRawZoomInHeight << "\n";
std::cout<< "corrRawZoomInWidth: " << param->corrRawZoomInWidth << "\n";
r_corrBatchRawZoomIn = new cuArrays<float> (
param->corrRawZoomInHeight,
param->corrRawZoomInWidth,
param->numberWindowDownInChunk,
param->numberWindowAcrossInChunk);
r_corrBatchRawZoomIn->allocate();
i_corrBatchZoomInValid = new cuArrays<int> (
param->corrRawZoomInHeight,
param->corrRawZoomInWidth,
param->numberWindowDownInChunk,
param->numberWindowAcrossInChunk);
i_corrBatchZoomInValid->allocate();
r_corrBatchSum = new cuArrays<float> (
param->numberWindowDownInChunk,
param->numberWindowAcrossInChunk);
r_corrBatchSum->allocate();
i_corrBatchValidCount = new cuArrays<int> (
param->numberWindowDownInChunk,
param->numberWindowAcrossInChunk);
i_corrBatchValidCount->allocate();
i_maxloc = new cuArrays<int2> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
i_maxloc->allocate();
r_maxval = new cuArrays<float> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
r_maxval->allocate();
r_snrValue = new cuArrays<float> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
r_snrValue->allocate();
r_covValue = new cuArrays<float3> (param->numberWindowDownInChunk, param->numberWindowAcrossInChunk);
r_covValue->allocate();
// end of new arrays
if(param->oversamplingMethod) {
corrSincOverSampler = new cuSincOverSamplerR2R(param->zoomWindowSize, param->oversamplingFactor, stream);
}

View File

@ -6,7 +6,7 @@
#ifndef __CUAMPCORCHUNK_H
#define __CUAMPCORCHUNK_H
#include "SlcImage.h"
#include "GDALImage.h"
#include "cuArrays.h"
#include "cuAmpcorParameter.h"
#include "cuOverSampler.h"
@ -24,15 +24,26 @@ private:
int devId;
cudaStream_t stream;
SlcImage *masterImage;
SlcImage *slaveImage;
GDALImage *masterImage;
GDALImage *slaveImage;
cuAmpcorParameter *param;
cuArrays<float2> *offsetImage;
cuArrays<float> *snrImage;
cuArrays<float3> *covImage;
// added for test
cuArrays<int> *intImage1;
cuArrays<float> *floatImage1;
// gpu buffer
cuArrays<float2> * c_masterChunkRaw, * c_slaveChunkRaw;
cuArrays<float> * r_masterChunkRaw, * r_slaveChunkRaw;
// gpu windows raw data
cuArrays<float2> * c_masterBatchRaw, * c_slaveBatchRaw, * c_slaveBatchZoomIn;
cuArrays<float> * r_masterBatchRaw, * r_slaveBatchRaw;
// gpu windows oversampled data
cuArrays<float2> * c_masterBatchOverSampled, * c_slaveBatchOverSampled;
cuArrays<float> * r_masterBatchOverSampled, * r_slaveBatchOverSampled;
cuArrays<float> * r_corrBatchRaw, * r_corrBatchZoomIn, * r_corrBatchZoomInOverSampled, * r_corrBatchZoomInAdjust;
@ -50,26 +61,32 @@ private:
cuArrays<int2> *offsetInit;
cuArrays<int2> *offsetZoomIn;
cuArrays<float2> *offsetFinal;
cuArrays<float> *corrMaxValue;
//corr statistics
cuArrays<int2> *i_maxloc;
cuArrays<float> *r_maxval;
//SNR estimation
cuArrays<float> *r_corrBatchRawZoomIn;
cuArrays<float> *r_corrBatchSum;
cuArrays<int> *i_corrBatchZoomInValid, *i_corrBatchValidCount;
cuArrays<float> *corrMaxValue;
cuArrays<float> *r_snrValue;
cuArrays<int2> *i_maxloc;
cuArrays<float> *r_maxval;
// Varince estimation.
cuArrays<float3> *r_covValue;
public:
cuAmpcorChunk() {}
//cuAmpcorChunk(cuAmpcorParameter *param_, SlcImage *master_, SlcImage *slave_);
void setIndex(int idxDown_, int idxAcross_);
cuAmpcorChunk(cuAmpcorParameter *param_, GDALImage *master_, GDALImage *slave_, cuArrays<float2> *offsetImage_,
cuArrays<float> *snrImage_, cuArrays<float3> *covImage_, cuArrays<int> *intImage1_, cuArrays<float> *floatImage1_, cudaStream_t stream_);
cuAmpcorChunk(cuAmpcorParameter *param_, SlcImage *master_, SlcImage *slave_, cuArrays<float2> *offsetImage_,
cuArrays<float> *snrImage_, cudaStream_t stream_);
void loadMasterChunk();
void loadSlaveChunk();

View File

@ -1,7 +1,7 @@
// Implementation of cuAmpcorController
#include "cuAmpcorController.h"
#include "SlcImage.h"
#include "GDALImage.h"
#include "cuArrays.h"
#include "cudaUtil.h"
#include "cuAmpcorChunk.h"
@ -13,48 +13,64 @@ cuAmpcorController::~cuAmpcorController() { delete param; }
void cuAmpcorController::runAmpcor() {
// set the gpu id
param->deviceID = gpuDeviceInit(param->deviceID);
SlcImage *masterImage;
SlcImage *slaveImage;
// initialize the gdal driver
GDALAllRegister();
// master and slave images; use band=1 as default
// TODO: selecting band
GDALImage *masterImage = new GDALImage(param->masterImageName, 1, param->mmapSizeInGB);
GDALImage *slaveImage = new GDALImage(param->slaveImageName, 1, param->mmapSizeInGB);
cuArrays<float2> *offsetImage, *offsetImageRun;
cuArrays<float> *snrImage, *snrImageRun;
cuArrays<float3> *covImage, *covImageRun;
// For debugging.
cuArrays<int> *intImage1;
cuArrays<float> *floatImage1;
// cuArrays<float> *floatImage;
// cuArrays<int> *intImage;
masterImage = new SlcImage(param->masterImageName, param->masterImageHeight, param->masterImageWidth, param->mmapSizeInGB);
slaveImage = new SlcImage(param->slaveImageName, param->slaveImageHeight, param->slaveImageWidth, param->mmapSizeInGB);
int nWindowsDownRun = param->numberChunkDown*param->numberWindowDownInChunk;
int nWindowsAcrossRun = param->numberChunkAcross*param->numberWindowAcrossInChunk;
int nWindowsDownRun = param->numberChunkDown * param->numberWindowDownInChunk;
int nWindowsAcrossRun = param->numberChunkAcross * param->numberWindowAcrossInChunk;
std::cout << "Debug " << nWindowsDownRun << " " << param->numberWindowDown << "\n";
offsetImageRun = new cuArrays<float2>(nWindowsDownRun, nWindowsAcrossRun);
snrImageRun = new cuArrays<float>(nWindowsDownRun, nWindowsAcrossRun);
offsetImageRun->allocate();
snrImageRun = new cuArrays<float>(nWindowsDownRun, nWindowsAcrossRun);
snrImageRun->allocate();
covImageRun = new cuArrays<float3>(nWindowsDownRun, nWindowsAcrossRun);
covImageRun->allocate();
// intImage 1 and floatImage 1 are added for debugging issues
intImage1 = new cuArrays<int>(nWindowsDownRun, nWindowsAcrossRun);
intImage1->allocate();
floatImage1 = new cuArrays<float>(nWindowsDownRun, nWindowsAcrossRun);
floatImage1->allocate();
// Offsetfields.
offsetImage = new cuArrays<float2>(param->numberWindowDown, param->numberWindowAcross);
snrImage = new cuArrays<float>(param->numberWindowDown, param->numberWindowAcross);
offsetImage->allocate();
// SNR.
snrImage = new cuArrays<float>(param->numberWindowDown, param->numberWindowAcross);
snrImage->allocate();
// Minyan Zhong
// floatImage = new cuArrays<float>(param->numberWindowDown, param->numberWindowAcross);
// intImage = new cuArrays<int>(param->numberWindowDown, param->numberWindowAcross);
// Variance.
covImage = new cuArrays<float3>(param->numberWindowDown, param->numberWindowAcross);
covImage->allocate();
// floatImage->allocate();
// intImage->allocate();
//
cudaStream_t streams[param->nStreams];
cuAmpcorChunk *chunk[param->nStreams];
for(int ist=0; ist<param->nStreams; ist++)
{
cudaStreamCreate(&streams[ist]);
chunk[ist]= new cuAmpcorChunk(param, masterImage, slaveImage, offsetImageRun, snrImageRun, streams[ist]);
chunk[ist]= new cuAmpcorChunk(param, masterImage, slaveImage, offsetImageRun, snrImageRun, covImageRun, intImage1, floatImage1, streams[ist]);
}
int nChunksDown = param->numberChunkDown;
@ -63,7 +79,7 @@ void cuAmpcorController::runAmpcor() {
std::cout << "Total number of windows (azimuth x range): " <<param->numberWindowDown << " x " << param->numberWindowAcross << std::endl;
std::cout << "to be processed in the number of chunks: " <<nChunksDown << " x " << nChunksAcross << std::endl;
for(int i = 60; i<nChunksDown; i++)
for(int i = 0; i<nChunksDown; i++)
{
std::cout << "Processing chunk (" << i <<", x" << ")" << std::endl;
for(int j=0; j<nChunksAcross; j+=param->nStreams)
@ -81,26 +97,39 @@ void cuAmpcorController::runAmpcor() {
cudaDeviceSynchronize();
// Do extraction.
cuArraysCopyExtract(offsetImageRun, offsetImage, make_int2(0,0), streams[0]);
cuArraysCopyExtract(snrImageRun, snrImage, make_int2(0,0), streams[0]);
cuArraysCopyExtract(covImageRun, covImage, make_int2(0,0), streams[0]);
offsetImage->outputToFile(param->offsetImageName, streams[0]);
snrImage->outputToFile(param->snrImageName, streams[0]);
covImage->outputToFile(param->covImageName, streams[0]);
// Minyan Zhong
// floatImage->allocate();
// intImage->allocate();
//
// Output debugging arrays.
intImage1->outputToFile("intImage1", streams[0]);
floatImage1->outputToFile("floatImage1", streams[0]);
outputGrossOffsets();
// Delete arrays.
delete offsetImage;
delete snrImage;
delete covImage;
delete intImage1;
delete floatImage1;
delete offsetImageRun;
delete snrImageRun;
delete covImageRun;
for (int ist=0; ist<param->nStreams; ist++)
delete chunk[ist];
delete masterImage;
delete slaveImage;
}
void cuAmpcorController::outputGrossOffsets()

View File

@ -17,6 +17,8 @@
cuAmpcorParameter::cuAmpcorParameter()
{
// default settings
// will be changed if they are set by python scripts
algorithm = 0; //0 freq; 1 time
deviceID = 0;
nStreams = 1;
@ -43,6 +45,7 @@ cuAmpcorParameter::cuAmpcorParameter()
offsetImageName = "DenseOffset.off";
grossOffsetImageName = "GrossOffset.off";
snrImageName = "snr.snr";
covImageName = "cov.cov";
numberWindowDown = 1;
numberWindowAcross = 1;
numberWindowDownInChunk = 1;
@ -50,6 +53,13 @@ cuAmpcorParameter::cuAmpcorParameter()
masterStartPixelDown0 = 0;
masterStartPixelAcross0 = 0;
corrRawZoomInHeight = 17; // 8*2+1
corrRawZoomInWidth = 17;
useMmap = 1; // use mmap
mmapSizeInGB = 1;
}
/**

View File

@ -50,6 +50,8 @@ public:
int searchWindowSizeHeightRawZoomIn;
int searchWindowSizeWidthRawZoomIn;
int corrRawZoomInHeight; // window to estimate snr
int corrRawZoomInWidth;
// chip or window size after oversampling
int rawDataOversamplingFactor; /// Raw data overampling factor (from original size to oversampled size)
@ -101,7 +103,8 @@ public:
int numberChunkAcross; /// number of chunks (across)
int numberChunks;
int mmapSizeInGB;
int useMmap; /// whether to use mmap 0=not 1=yes (default = 0)
int mmapSizeInGB; /// size for mmap buffer(useMmap=1) or a cpu memory buffer (useMmap=0)
int masterStartPixelDown0;
int masterStartPixelAcross0;
@ -128,6 +131,7 @@ public:
std::string grossOffsetImageName;
std::string offsetImageName; /// Output Offset fields filename
std::string snrImageName; /// Output SNR filename
std::string covImageName;
cuAmpcorParameter(); /// Class constructor and default parameters setter
~cuAmpcorParameter(); /// Class descontructor

View File

@ -22,16 +22,23 @@ void cuArraysCopyToBatchWithOffset(cuArrays<float2> *image1, const int lda1, cuA
const int *offsetH, const int* offsetW, cudaStream_t stream);
void cuArraysCopyToBatchAbsWithOffset(cuArrays<float2> *image1, const int lda1, cuArrays<float2> *image2,
const int *offsetH, const int* offsetW, cudaStream_t stream);
void cuArraysCopyToBatchWithOffsetR2C(cuArrays<float> *image1, const int lda1, cuArrays<float2> *image2,
const int *offsetH, const int* offsetW, cudaStream_t stream);
void cuArraysCopyC2R(cuArrays<float2> *image1, cuArrays<float> *image2, int strideH, int strideW, cudaStream_t stream);
// same routine name overloaded for different data type
void cuArraysCopyExtract(cuArrays<float> *imagesIn, cuArrays<float> *imagesOut, cuArrays<int2> *offset, cudaStream_t stream);
void cuArraysCopyExtract(cuArrays<float> *imagesIn, cuArrays<float> *imagesOut, int2 offset, cudaStream_t stream);
void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float> *imagesOut, int2 offset, cudaStream_t stream);
void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float2> *imagesOut, int2 offset, cudaStream_t stream);
void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float2> *imagesOut, cuArrays<int2> *offsets, cudaStream_t stream);
void cuArraysCopyExtract(cuArrays<float3> *imagesIn, cuArrays<float3> *imagesOut, int2 offset, cudaStream_t stream);
void cuArraysCopyInsert(cuArrays<float2> *imageIn, cuArrays<float2> *imageOut, int offsetX, int offersetY, cudaStream_t stream);
void cuArraysCopyInsert(cuArrays<float3> *imageIn, cuArrays<float3> *imageOut, int offsetX, int offersetY, cudaStream_t stream);
void cuArraysCopyInsert(cuArrays<float> *imageIn, cuArrays<float> *imageOut, int offsetX, int offsetY, cudaStream_t stream);
void cuArraysCopyInsert(cuArrays<int> *imageIn, cuArrays<int> *imageOut, int offsetX, int offersetY, cudaStream_t stream);
void cuArraysCopyInversePadded(cuArrays<float> *imageIn, cuArrays<float> *imageOut,cudaStream_t stream);
void cuArraysCopyPadded(cuArrays<float> *imageIn, cuArrays<float> *imageOut,cudaStream_t stream);
@ -80,7 +87,11 @@ void cuArraysElementMultiplyConjugate(cuArrays<float2> *image1, cuArrays<float2>
void cuArraysCopyExtractCorr(cuArrays<float> *imagesIn, cuArrays<float> *imagesOut, cuArrays<int> *imagesValid, cuArrays<int2> *maxloc, cudaStream_t stream);
// implemented in cuCorrNormalization.cu
void cuArraysSumCorr(cuArrays<float> *images, cuArrays<int> *imagesValid, cuArrays<float> *imagesSum, cuArrays<int> *imagesValidCount, cudaStream_t stream);
// implemented in cuEstimateStats.cu
void cuEstimateSnr(cuArrays<float> *corrSum, cuArrays<int> *corrValidCount, cuArrays<float> *maxval, cuArrays<float> *snrValue, cudaStream_t stream);
// implemented in cuEstimateStats.cu
void cuEstimateVariance(cuArrays<float> *corrBatchRaw, cuArrays<int2> *maxloc, cuArrays<float> *maxval, cuArrays<float3> *covValue, cudaStream_t stream);
#endif

View File

@ -155,7 +155,20 @@
file.close();
}
template<>
void cuArrays<float3>::outputToFile(std::string fn, cudaStream_t stream)
{
float *data;
data = (float *)malloc(size*count*sizeof(float3));
checkCudaErrors(cudaMemcpyAsync(data, devData, size*count*sizeof(float3), cudaMemcpyDeviceToHost, stream));
std::ofstream file;
file.open(fn.c_str(), std::ios_base::binary);
file.write((char *)data, size*count*sizeof(float3));
file.close();
}
template class cuArrays<float>;
template class cuArrays<float2>;
template class cuArrays<float3>;
template class cuArrays<int2>;
template class cuArrays<int>;

View File

@ -16,7 +16,7 @@ inline __device__ float cuAbs(float2 a)
return sqrtf(a.x*a.x+a.y*a.y);
}*/
//copy a chunk into a series of chips
// copy a chunk into a batch of chips for a given stride
__global__ void cuArraysCopyToBatch_kernel(const float2 *imageIn, const int inNX, const int inNY,
float2 *imageOut, const int outNX, const int outNY,
const int nImagesX, const int nImagesY,
@ -33,7 +33,6 @@ __global__ void cuArraysCopyToBatch_kernel(const float2 *imageIn, const int inNX
imageOut[idxOut] = imageIn[idxIn];
}
//tested
void cuArraysCopyToBatch(cuArrays<float2> *image1, cuArrays<float2> *image2,
int strideH, int strideW, cudaStream_t stream)
{
@ -48,6 +47,8 @@ void cuArraysCopyToBatch(cuArrays<float2> *image1, cuArrays<float2> *image2,
getLastCudaError("cuArraysCopyToBatch_kernel");
}
// copy a chunk into a batch of chips for a set of offsets (varying strides), from complex to complex
__global__ void cuArraysCopyToBatchWithOffset_kernel(const float2 *imageIn, const int inNY,
float2 *imageOut, const int outNX, const int outNY, const int nImages,
const int *offsetX, const int *offsetY)
@ -61,10 +62,7 @@ __global__ void cuArraysCopyToBatchWithOffset_kernel(const float2 *imageIn, cons
imageOut[idxOut] = imageIn[idxIn];
}
/// @param[in] image1 input image in a large chunk
/// @param[in] lda1 width of image 1
/// @param[out] image2 output image with a batch of small windows
// lda1 (inNY) is the leading dimension of image1, usually, its width
void cuArraysCopyToBatchWithOffset(cuArrays<float2> *image1, const int lda1, cuArrays<float2> *image2,
const int *offsetH, const int* offsetW, cudaStream_t stream)
{
@ -79,6 +77,7 @@ void cuArraysCopyToBatchWithOffset(cuArrays<float2> *image1, const int lda1, cuA
getLastCudaError("cuArraysCopyToBatchAbsWithOffset_kernel");
}
// copy a chunk into a batch of chips for a set of offsets (varying strides), from complex to real(take amplitudes)
__global__ void cuArraysCopyToBatchAbsWithOffset_kernel(const float2 *imageIn, const int inNY,
float2 *imageOut, const int outNX, const int outNY, const int nImages,
const int *offsetX, const int *offsetY)
@ -106,6 +105,34 @@ void cuArraysCopyToBatchAbsWithOffset(cuArrays<float2> *image1, const int lda1,
getLastCudaError("cuArraysCopyToBatchAbsWithOffset_kernel");
}
// copy a chunk into a batch of chips for a set of offsets (varying strides), from real to complex(to real part)
__global__ void cuArraysCopyToBatchWithOffsetR2C_kernel(const float *imageIn, const int inNY,
float2 *imageOut, const int outNX, const int outNY, const int nImages,
const int *offsetX, const int *offsetY)
{
int idxImage = blockIdx.z;
int outx = threadIdx.x + blockDim.x*blockIdx.x;
int outy = threadIdx.y + blockDim.y*blockIdx.y;
if(idxImage>=nImages || outx >= outNX || outy >= outNY) return;
int idxOut = idxImage*outNX*outNY + outx*outNY + outy;
int idxIn = (offsetX[idxImage]+outx)*inNY + offsetY[idxImage] + outy;
imageOut[idxOut] = make_float2(imageIn[idxIn], 0.0f);
}
void cuArraysCopyToBatchWithOffsetR2C(cuArrays<float> *image1, const int lda1, cuArrays<float2> *image2,
const int *offsetH, const int* offsetW, cudaStream_t stream)
{
const int nthreads = 16;
dim3 blockSize(nthreads, nthreads, 1);
dim3 gridSize(IDIVUP(image2->height,nthreads), IDIVUP(image2->width,nthreads), image2->count);
//fprintf(stderr, "copy tile to batch, %d %d\n", lda1, image2->count);
cuArraysCopyToBatchWithOffsetR2C_kernel<<<gridSize,blockSize, 0 , stream>>> (
image1->devData, lda1,
image2->devData, image2->height, image2->width, image2->count,
offsetH, offsetW);
getLastCudaError("cuArraysCopyToBatchWithOffsetR2C_kernel");
}
//copy a chunk into a series of chips
__global__ void cuArraysCopyC2R_kernel(const float2 *imageIn, const int inNX, const int inNY,
float *imageOut, const int outNX, const int outNY,
@ -208,14 +235,17 @@ __global__ void cuArraysCopyExtractVaryingOffsetCorr(const float *imageIn, const
int idxImage = blockIdx.z;
// One thread per out point. Find the coordinates within the current image.
int outx = threadIdx.x + blockDim.x*blockIdx.x;
int outy = threadIdx.y + blockDim.y*blockIdx.y;
// Find the correponding input.
int inx = outx + maxloc[idxImage].x - outNX/2;
int iny = outy + maxloc[idxImage].y - outNY/2;
if (outx < outNX && outy < outNY)
{
// Find the location in full array.
int idxOut = ( blockIdx.z * outNX + outx ) * outNY + outy;
int idxIn = ( blockIdx.z * inNX + inx ) * inNY + iny;
@ -284,6 +314,7 @@ void cuArraysCopyExtract(cuArrays<float> *imagesIn, cuArrays<float> *imagesOut,
getLastCudaError("cuArraysCopyExtract error");
}
//
__global__ void cuArraysCopyExtract_C2C_FixedOffset(const float2 *imageIn, const int inNX, const int inNY,
float2 *imageOut, const int outNX, const int outNY, const int nImages,
@ -315,6 +346,42 @@ void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float2> *imagesOut
imagesOut->devData, imagesOut->height, imagesOut->width, imagesOut->count, offset.x, offset.y);
getLastCudaError("cuArraysCopyExtractC2C error");
}
//
// float3
__global__ void cuArraysCopyExtract_C2C_FixedOffset(const float3 *imageIn, const int inNX, const int inNY,
float3 *imageOut, const int outNX, const int outNY, const int nImages,
const int offsetX, const int offsetY)
{
int outx = threadIdx.x + blockDim.x*blockIdx.x;
int outy = threadIdx.y + blockDim.y*blockIdx.y;
if(outx < outNX && outy < outNY)
{
int idxOut = (blockIdx.z * outNX + outx)*outNY+outy;
int idxIn = (blockIdx.z*inNX + outx + offsetX)*inNY + outy + offsetY;
imageOut[idxOut] = imageIn[idxIn];
}
}
void cuArraysCopyExtract(cuArrays<float3> *imagesIn, cuArrays<float3> *imagesOut, int2 offset, cudaStream_t stream)
{
//assert(imagesIn->height >= imagesOut && inNY >= outNY);
const int nthreads = NTHREADS2D;
dim3 threadsperblock(nthreads, nthreads,1);
dim3 blockspergrid(IDIVUP(imagesOut->height,nthreads), IDIVUP(imagesOut->width,nthreads), imagesOut->count);
//std::cout << "debug copyExtract" << imagesOut->width << imagesOut->height << "\n";
//imagesIn->debuginfo(stream);
//imagesOut->debuginfo(stream);
cuArraysCopyExtract_C2C_FixedOffset<<<blockspergrid, threadsperblock,0, stream>>>
(imagesIn->devData, imagesIn->height, imagesIn->width,
imagesOut->devData, imagesOut->height, imagesOut->width, imagesOut->count, offset.x, offset.y);
getLastCudaError("cuArraysCopyExtractFloat3 error");
}
//
__global__ void cuArraysCopyExtract_C2R_FixedOffset(const float2 *imageIn, const int inNX, const int inNY,
float *imageOut, const int outNX, const int outNY, const int nImages,
@ -332,6 +399,7 @@ __global__ void cuArraysCopyExtract_C2R_FixedOffset(const float2 *imageIn, const
}
void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float> *imagesOut, int2 offset, cudaStream_t stream)
{
//assert(imagesIn->height >= imagesOut && inNY >= outNY);
@ -343,7 +411,7 @@ void cuArraysCopyExtract(cuArrays<float2> *imagesIn, cuArrays<float> *imagesOut,
imagesOut->devData, imagesOut->height, imagesOut->width, imagesOut->count, offset.x, offset.y);
getLastCudaError("cuArraysCopyExtractC2C error");
}
//
__global__ void cuArraysCopyInsert_kernel(const float2* imageIn, const int inNX, const int inNY,
float2* imageOut, const int outNY, const int offsetX, const int offsetY)
@ -367,7 +435,31 @@ void cuArraysCopyInsert(cuArrays<float2> *imageIn, cuArrays<float2> *imageOut, i
imageOut->devData, imageOut->width, offsetX, offsetY);
getLastCudaError("cuArraysCopyInsert error");
}
//
// float3
__global__ void cuArraysCopyInsert_kernel(const float3* imageIn, const int inNX, const int inNY,
float3* imageOut, const int outNY, const int offsetX, const int offsetY)
{
int inx = threadIdx.x + blockDim.x*blockIdx.x;
int iny = threadIdx.y + blockDim.y*blockIdx.y;
if(inx < inNX && iny < inNY) {
int idxOut = IDX2R(inx+offsetX, iny+offsetY, outNY);
int idxIn = IDX2R(inx, iny, inNY);
imageOut[idxOut] = make_float3(imageIn[idxIn].x, imageIn[idxIn].y, imageIn[idxIn].z);
}
}
void cuArraysCopyInsert(cuArrays<float3> *imageIn, cuArrays<float3> *imageOut, int offsetX, int offsetY, cudaStream_t stream)
{
const int nthreads = 16;
dim3 threadsperblock(nthreads, nthreads);
dim3 blockspergrid(IDIVUP(imageIn->height,nthreads), IDIVUP(imageIn->width,nthreads));
cuArraysCopyInsert_kernel<<<blockspergrid, threadsperblock,0, stream>>>(imageIn->devData, imageIn->height, imageIn->width,
imageOut->devData, imageOut->width, offsetX, offsetY);
getLastCudaError("cuArraysCopyInsert error");
}
//
__global__ void cuArraysCopyInsert_kernel(const float* imageIn, const int inNX, const int inNY,
float* imageOut, const int outNY, const int offsetX, const int offsetY)
@ -392,6 +484,32 @@ void cuArraysCopyInsert(cuArrays<float> *imageIn, cuArrays<float> *imageOut, int
getLastCudaError("cuArraysCopyInsert Float error");
}
//
__global__ void cuArraysCopyInsert_kernel(const int* imageIn, const int inNX, const int inNY,
int* imageOut, const int outNY, const int offsetX, const int offsetY)
{
int inx = threadIdx.x + blockDim.x*blockIdx.x;
int iny = threadIdx.y + blockDim.y*blockIdx.y;
if(inx < inNX && iny < inNY) {
int idxOut = IDX2R(inx+offsetX, iny+offsetY, outNY);
int idxIn = IDX2R(inx, iny, inNY);
imageOut[idxOut] = imageIn[idxIn];
}
}
void cuArraysCopyInsert(cuArrays<int> *imageIn, cuArrays<int> *imageOut, int offsetX, int offsetY, cudaStream_t stream)
{
const int nthreads = 16;
dim3 threadsperblock(nthreads, nthreads);
dim3 blockspergrid(IDIVUP(imageIn->height,nthreads), IDIVUP(imageIn->width,nthreads));
cuArraysCopyInsert_kernel<<<blockspergrid, threadsperblock,0, stream>>>(imageIn->devData, imageIn->height, imageIn->width,
imageOut->devData, imageOut->width, offsetX, offsetY);
getLastCudaError("cuArraysCopyInsert Integer error");
}
//
__global__ void cuArraysCopyInversePadded_kernel(float *imageIn, int inNX, int inNY, int sizeIn,
float *imageOut, int outNX, int outNY, int sizeOut, int nImages)

View File

@ -195,7 +195,6 @@ __device__ float2 partialSums(const float v, volatile float* shmem, const int st
return make_float2(Sum, Sum2);
}
__forceinline__ __device__ int __mul(const int a, const int b) { return a*b; }
template<const int Nthreads2>
__global__ void cuCorrNormalize_kernel(
@ -232,7 +231,7 @@ __global__ void cuCorrNormalize_kernel(
templateSum += templateD[i];
}
templateSum = sumReduceBlock<Nthreads>(templateSum, shmem);
__syncthreads();
float templateSum2 = 0.0f;
for (int i = tid; i < templateSize; i += Nthreads)
@ -241,11 +240,12 @@ __global__ void cuCorrNormalize_kernel(
templateSum2 += t*t;
}
templateSum2 = sumReduceBlock<Nthreads>(templateSum2, shmem);
__syncthreads();
//if(tid ==0) printf("template sum %d %g %g \n", imageIdx, templateSum, templateSum2);
/*********/
shmem[tid] = shmem[tid + Nthreads] = 0.0f;
shmem[tid] = shmem[tid + Nthreads] = shmem[tid + 2*Nthreads] = 0.0f;
__syncthreads();
float imageSum = 0.0f;
@ -281,7 +281,7 @@ __global__ void cuCorrNormalize_kernel(
if (tid < resultNY)
{
const int ix = iaddr/imageNY;
const int addr = __mul(ix-templateNX, resultNY);
const int addr = (ix-templateNX)*resultNY;
//printf("test norm %d %d %d %d %f\n", tid, ix, addr, addr+tid, resultD[addr + tid]);

View File

@ -25,7 +25,7 @@ __global__ void cudaKernel_estimateSnr(const float* corrSum, const int* corrVali
float mean = (corrSum[idx] - maxval[idx] * maxval[idx]) / (corrValidCount[idx] - 1);
snrValue[idx] = maxval[idx] / mean;
snrValue[idx] = maxval[idx] * maxval[idx] / mean;
}
void cuEstimateSnr(cuArrays<float> *corrSum, cuArrays<int> *corrValidCount, cuArrays<float> *maxval, cuArrays<float> *snrValue, cudaStream_t stream)
@ -68,3 +68,80 @@ void cuEstimateSnr(cuArrays<float> *corrSum, cuArrays<int> *corrValidCount, cuAr
getLastCudaError("cuda kernel estimate stats error\n");
}
template <const int BLOCKSIZE> // number of threads per block.
__global__ void cudaKernel_estimateVar(const float* corrBatchRaw, const int NX, const int NY, const int2* maxloc, const float* maxval, float3* covValue, const int size)
{
// Find image id.
int idxImage = threadIdx.x + blockDim.x*blockIdx.x;
if (idxImage >= size) return;
// Preparation.
int px = maxloc[idxImage].x;
int py = maxloc[idxImage].y;
float peak = maxval[idxImage];
// Check if maxval is on the margin.
if (px-1 < 0 || py-1 <0 || px + 1 >=NX || py+1 >=NY) {
covValue[idxImage] = make_float3(99.0, 99.0, 99.0);
}
else {
int offset = NX * NY * idxImage;
int idx00 = offset + (px - 1) * NY + py - 1;
int idx01 = offset + (px - 1) * NY + py ;
int idx02 = offset + (px - 1) * NY + py + 1;
int idx10 = offset + (px ) * NY + py - 1;
int idx11 = offset + (px ) * NY + py ;
int idx12 = offset + (px ) * NY + py + 1;
int idx20 = offset + (px + 1) * NY + py - 1;
int idx21 = offset + (px + 1) * NY + py ;
int idx22 = offset + (px + 1) * NY + py + 1;
float dxx = - ( corrBatchRaw[idx21] + corrBatchRaw[idx01] - 2*corrBatchRaw[idx11] ) * 0.5;
float dyy = - ( corrBatchRaw[idx12] + corrBatchRaw[idx10] - 2*corrBatchRaw[idx11] ) * 0.5;
float dxy = - ( corrBatchRaw[idx22] + corrBatchRaw[idx00] - corrBatchRaw[idx20] - corrBatchRaw[idx02] ) *0.25;
float n2 = fmaxf(1 - peak, 0.0);
int winSize = NX*NY;
dxx = dxx * winSize;
dyy = dyy * winSize;
dxy = dxy * winSize;
float n4 = n2*n2;
n2 = n2 * 2;
n4 = n4 * 0.5 * winSize;
float u = dxy * dxy - dxx * dyy;
float u2 = u*u;
if (fabsf(u) < 1e-2) {
covValue[idxImage] = make_float3(99.0, 99.0, 99.0);
}
else {
float cov_xx = (- n2 * u * dyy + n4 * ( dyy*dyy + dxy*dxy) ) / u2;
float cov_yy = (- n2 * u * dxx + n4 * ( dxx*dxx + dxy*dxy) ) / u2;
float cov_xy = ( n2 * u * dxy - n4 * ( dxx + dyy ) * dxy ) / u2;
covValue[idxImage] = make_float3(cov_xx, cov_yy, cov_xy);
}
}
}
void cuEstimateVariance(cuArrays<float> *corrBatchRaw, cuArrays<int2> *maxloc, cuArrays<float> *maxval, cuArrays<float3> *covValue, cudaStream_t stream)
{
int size = corrBatchRaw->count;
// One dimensional launching parameters to loop over every correlation surface.
cudaKernel_estimateVar<NTHREADS><<< IDIVUP(size, NTHREADS), NTHREADS, 0, stream>>>
(corrBatchRaw->devData, corrBatchRaw->height, corrBatchRaw->width, maxloc->devData, maxval->devData, covValue->devData, size);
getLastCudaError("cudaKernel_estimateVar error\n");
}

View File

@ -7,20 +7,21 @@
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
import os
os.environ["CC"] = "g++"
import numpy
setup( name = 'PyCuAmpcor',
ext_modules = cythonize(Extension(
"PyCuAmpcor",
sources=['PyCuAmpcor.pyx'],
include_dirs=['/usr/local/cuda/include'], # REPLACE WITH YOUR PATH TO YOUR CUDA LIBRARY HEADERS
include_dirs=['/usr/local/cuda/include', numpy.get_include()], # REPLACE WITH YOUR PATH TO YOUR CUDA LIBRARY HEADERS
extra_compile_args=['-fPIC','-fpermissive'],
extra_objects=['SlcImage.o','cuAmpcorChunk.o','cuAmpcorParameter.o','cuCorrFrequency.o',
extra_objects=['GDALImage.o','cuAmpcorChunk.o','cuAmpcorParameter.o','cuCorrFrequency.o',
'cuCorrNormalization.o','cuCorrTimeDomain.o','cuArraysCopy.o',
'cuArrays.o','cuArraysPadding.o','cuOffset.o','cuOverSampler.o',
'cuSincOverSampler.o', 'cuDeramp.o','cuAmpcorController.o'],
extra_link_args=['-L/usr/local/cuda/lib64','-lcuda','-lcudart','-lcufft','-lcublas'], # REPLACE FIRST PATH WITH YOUR PATH TO YOUR CUDA LIBRARIES
'cuSincOverSampler.o', 'cuDeramp.o','cuAmpcorController.o','cuEstimateStats.o'],
extra_link_args=['-L/usr/local/cuda/lib64',
'-L/usr/lib64/nvidia',
'-lcuda','-lcudart','-lcufft','-lcublas','-lgdal'], # REPLACE FIRST PATH WITH YOUR PATH TO YOUR CUDA LIBRARIES
language='c++'
)))

View File

@ -78,3 +78,6 @@ SConscript(rfi)
SConscript('PyCuAmpcor/SConscript')
SConscript('splitSpectrum/SConscript')
SConscript('alos2proc/SConscript')
if os.path.exists('geo_autoRIFT'):
SConscript('geo_autoRIFT/SConscript')

View File

@ -33,6 +33,8 @@ def cmdLineParse(iargs = None):
def run(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
objSlc1 = isceobj.createSlcImage()
#right now imageSlc1 and 2 are just text files, need to open them as image
IU.copyAttributes(imageSlc1, objSlc1)
objSlc1.setAccessMode('read')
objSlc1.createImage()
@ -81,7 +83,6 @@ def run(imageSlc1, imageSlc2, resampName, azLooks, rgLooks):
def main(iargs=None):
inps = cmdLineParse(iargs)
img1 = isceobj.createImage()
@ -97,8 +98,7 @@ def main(iargs=None):
if __name__ == '__main__':
main()
'''
Main driver.
'''

View File

@ -52,7 +52,7 @@ def generate(env):
# default flags for the NVCC compiler
env['STATICNVCCFLAGS'] = ''
env['SHAREDNVCCFLAGS'] = ''
env['ENABLESHAREDNVCCFLAG'] = '-arch=sm_35 -shared -Xcompiler -fPIC'
env['ENABLESHAREDNVCCFLAG'] = '-shared -Xcompiler -fPIC'
# default NVCC commands
env['STATICNVCCCMD'] = '$NVCC -o $TARGET -c $NVCCFLAGS $STATICNVCCFLAGS $SOURCES'
@ -153,7 +153,7 @@ def generate(env):
#env.Append(LIBPATH=[cudaSDKPath + '/lib', cudaSDKPath + '/common/lib' + cudaSDKSubLibDir, cudaToolkitPath + '/lib'])
env.Append(CUDACPPPATH=[cudaToolkitPath + '/include'])
env.Append(CUDALIBPATH=[cudaToolkitPath + '/lib', cudaToolkitPath + '/lib64'])
env.Append(CUDALIBPATH=[cudaToolkitPath + '/lib', cudaToolkitPath + '/lib64', '/lib64'])
env.Append(CUDALIBS=['cudart'])
def exists(env):

View File

@ -12,7 +12,7 @@
from __future__ import print_function
import sys
import os
import urllib2
import urllib
import getopt
import re
import shutil
@ -57,7 +57,7 @@ def print2log(msg, withtime=True, cmd=False):
if withtime:
now = datetime.datetime.today()
msg = "%s >> %s" % (now.isoformat(), msg)
LOGFILE.write(msg + '\n')
LOGFILE.write((msg + '\n').encode('utf-8'))
LOGFILE.flush()
os.fsync(LOGFILE)
@ -157,9 +157,9 @@ def downloadfile(url, fname, repeat=1):
counter = 0
while counter < repeat:
try:
response = urllib2.urlopen(url)
response = urllib.request.urlopen(url)
break
except urllib2.URLError, e:
except urllib.request.URLError as e:
counter += 1
if hasattr(e, 'reason'):
print2log("Failed to reach server. Reason: %s" % e.reason)
@ -851,7 +851,7 @@ class ISCEDeps(object):
f = open(self.config, 'rb')
lines = f.readlines()
for line in lines:
m = re.match("([^#].*?)=([^#]+?)$", line.strip())
m = re.match("([^#].*?)=([^#]+?)$", line.strip().decode('utf-8'))
if m:
var = m.group(1).strip()
val = m.group(2).strip()
@ -867,7 +867,7 @@ def readSetupConfig(setup_config):
f = open(setup_config, 'rb')
lines = f.readlines()
for line in lines:
m = re.match("([^#].*?)=([^#]+?)$", line.strip())
m = re.match("([^#].*?)=([^#]+?)$", line.strip().decode('utf-8'))
if m:
var = m.group(1).strip()
val = m.group(2).strip().replace('"', '')
@ -885,7 +885,7 @@ def checkArgs(args):
"""
try:
opts, args = getopt.getopt(args, "h", ["help", "prefix=", "ping=", "config=", "uname=", "download=", "unpack=", "install=", "gcc=", "gpp=", "verbose"])
except getopt.GetoptError, err:
except getopt.GetoptError as err:
print2log("ProgError: %s" % str(err))
usage()
sys.exit(2)