Replace deprecated `normed` with `density` in numpy.histogram()
The normed keyword argument has been removed from np.histogram, np.histogram2d, and np.histogramdd. Use density instead. If normed was passed by position, density is now used. Here is the change log: https://numpy.org/devdocs/release/2.24.1-notes.html#expired-deprecationsLT1AB
parent
735fba0bdb
commit
3322c29698
|
@ -93,7 +93,7 @@ def runESD(self, debugPlot=True):
|
|||
vali = off[mask]
|
||||
val = np.hstack((val, vali))
|
||||
|
||||
|
||||
|
||||
|
||||
img = isceobj.createIntImage()
|
||||
img.filename = combIntName
|
||||
|
@ -114,13 +114,13 @@ def runESD(self, debugPlot=True):
|
|||
img.renderHdr()
|
||||
|
||||
if val.size == 0 :
|
||||
raise Exception('Coherence threshold too strict. No points left for reliable ESD estimate')
|
||||
raise Exception('Coherence threshold too strict. No points left for reliable ESD estimate')
|
||||
|
||||
medianval = np.median(val)
|
||||
meanval = np.mean(val)
|
||||
stdval = np.std(val)
|
||||
|
||||
hist, bins = np.histogram(val, 50, normed=1)
|
||||
hist, bins = np.histogram(val, 50, density=True)
|
||||
center = 0.5*(bins[:-1] + bins[1:])
|
||||
|
||||
|
||||
|
@ -156,7 +156,7 @@ def runESD(self, debugPlot=True):
|
|||
catalog.printToLog(logger, "runESD")
|
||||
self._insar.procDoc.addAllFromCatalog(catalog)
|
||||
|
||||
self._insar.secondaryTimingCorrection = medianval * reference.bursts[0].azimuthTimeInterval
|
||||
self._insar.secondaryTimingCorrection = medianval * reference.bursts[0].azimuthTimeInterval
|
||||
|
||||
return
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
#
|
||||
|
||||
|
||||
import numpy as np
|
||||
import numpy as np
|
||||
import os
|
||||
import isceobj
|
||||
import logging
|
||||
|
@ -108,7 +108,7 @@ def runRangeCoreg(self, debugPlot=True):
|
|||
'''
|
||||
|
||||
if not self.doESD:
|
||||
return
|
||||
return
|
||||
|
||||
catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
|
||||
|
||||
|
@ -125,8 +125,8 @@ def runRangeCoreg(self, debugPlot=True):
|
|||
|
||||
minBurst, maxBurst = self._insar.commonReferenceBurstLimits(swath-1)
|
||||
|
||||
maxBurst = maxBurst - 1 ###For overlaps
|
||||
|
||||
maxBurst = maxBurst - 1 ###For overlaps
|
||||
|
||||
referenceTop = self._insar.loadProduct( os.path.join(self._insar.referenceSlcOverlapProduct, 'top_IW{0}.xml'.format(swath)))
|
||||
referenceBottom = self._insar.loadProduct( os.path.join(self._insar.referenceSlcOverlapProduct , 'bottom_IW{0}.xml'.format(swath)))
|
||||
|
||||
|
@ -137,14 +137,14 @@ def runRangeCoreg(self, debugPlot=True):
|
|||
for ii in range(minBurst,maxBurst):
|
||||
mFile = pair[0].bursts[ii-minBurst].image.filename
|
||||
sFile = pair[1].bursts[ii-minBurst].image.filename
|
||||
|
||||
|
||||
field = runAmpcor(mFile, sFile)
|
||||
|
||||
for offset in field:
|
||||
rangeOffsets.append(offset.dx)
|
||||
snr.append(offset.snr)
|
||||
|
||||
###Cull
|
||||
###Cull
|
||||
mask = np.logical_and(np.array(snr) > self.offsetSNRThreshold, np.abs(rangeOffsets) < 1.2)
|
||||
val = np.array(rangeOffsets)[mask]
|
||||
|
||||
|
@ -152,7 +152,7 @@ def runRangeCoreg(self, debugPlot=True):
|
|||
meanval = np.mean(val)
|
||||
stdval = np.std(val)
|
||||
|
||||
hist, bins = np.histogram(val, 50, normed=1)
|
||||
hist, bins = np.histogram(val, 50, density=True)
|
||||
center = 0.5*(bins[:-1] + bins[1:])
|
||||
|
||||
|
||||
|
|
|
@ -141,7 +141,7 @@ def main(iargs=None):
|
|||
meanval = np.mean(val)
|
||||
stdval = np.std(val)
|
||||
|
||||
hist, bins = np.histogram(val, 50, normed=1)
|
||||
hist, bins = np.histogram(val, 50, density=True)
|
||||
center = 0.5*(bins[:-1] + bins[1:])
|
||||
|
||||
|
||||
|
@ -190,7 +190,7 @@ if __name__ == '__main__':
|
|||
The main driver.
|
||||
'''
|
||||
|
||||
main()
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
# Heresh Fattahi: Adopted for stack processing
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
import numpy as np
|
||||
import os
|
||||
import isce
|
||||
import isceobj
|
||||
|
@ -20,7 +20,7 @@ import s1a_isce_utils as ut
|
|||
|
||||
def createParser():
|
||||
parser = argparse.ArgumentParser( description='Estimate range misregistration using overlap bursts')
|
||||
|
||||
|
||||
parser.add_argument('-o', '--out_range', type=str, dest='output', default='misreg.txt',
|
||||
help='Output textfile with the constant range offset')
|
||||
parser.add_argument('-t', '--snr_threshold', type=float, dest='offsetSNRThreshold', default=6.0,
|
||||
|
@ -139,7 +139,7 @@ def main(iargs=None):
|
|||
'''
|
||||
|
||||
#if not self.doESD:
|
||||
# return
|
||||
# return
|
||||
|
||||
#catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name)
|
||||
|
||||
|
@ -158,9 +158,9 @@ def main(iargs=None):
|
|||
# continue
|
||||
|
||||
#minBurst, maxBurst = self._insar.commonReferenceBurstLimits(swath-1)
|
||||
|
||||
#maxBurst = maxBurst - 1 ###For overlaps
|
||||
|
||||
|
||||
#maxBurst = maxBurst - 1 ###For overlaps
|
||||
|
||||
#referenceTop = self._insar.loadProduct( os.path.join(self._insar.referenceSlcOverlapProduct, 'top_IW{0}.xml'.format(swath)))
|
||||
#referenceBottom = self._insar.loadProduct( os.path.join(self._insar.referenceSlcOverlapProduct , 'bottom_IW{0}.xml'.format(swath)))
|
||||
referenceTop = ut.loadProduct(os.path.join(inps.reference , 'overlap','IW{0}_top.xml'.format(swath)))
|
||||
|
@ -185,14 +185,14 @@ def main(iargs=None):
|
|||
for ii in range(minBurst,maxBurst):
|
||||
mFile = pair[0].bursts[ii-minReference].image.filename
|
||||
sFile = pair[1].bursts[ii-minSecondary].image.filename
|
||||
|
||||
|
||||
field = runAmpcor(mFile, sFile)
|
||||
|
||||
for offset in field:
|
||||
rangeOffsets.append(offset.dx)
|
||||
snr.append(offset.snr)
|
||||
|
||||
###Cull
|
||||
###Cull
|
||||
mask = np.logical_and(np.array(snr) > inps.offsetSNRThreshold, np.abs(rangeOffsets) < 1.2)
|
||||
val = np.array(rangeOffsets)[mask]
|
||||
|
||||
|
@ -200,12 +200,12 @@ def main(iargs=None):
|
|||
meanval = np.mean(val)
|
||||
stdval = np.std(val)
|
||||
|
||||
# convert the estimations to meters
|
||||
# convert the estimations to meters
|
||||
medianval = medianval * referenceTop.bursts[0].rangePixelSize
|
||||
meanval = meanval * referenceTop.bursts[0].rangePixelSize
|
||||
stdval = stdval * referenceTop.bursts[0].rangePixelSize
|
||||
|
||||
hist, bins = np.histogram(val, 50, normed=1)
|
||||
hist, bins = np.histogram(val, 50, density=True)
|
||||
center = 0.5*(bins[:-1] + bins[1:])
|
||||
|
||||
outputDir = os.path.dirname(inps.output)
|
||||
|
|
Loading…
Reference in New Issue