ISCE_INSAR/components/isceobj/TopsProc/runPrepESD.py

331 lines
11 KiB
Python
Raw Normal View History

2019-01-16 19:40:08 +00:00
#
# Author: Piyush Agram
# Copyright 2016
#
import numpy as np
import os
import isceobj
import logging
from isceobj.Util.ImageUtil import ImageLib as IML
import datetime
import pprint
from .runFineResamp import getRelativeShifts
def multilook(intname, alks=5, rlks=15):
'''
Take looks.
'''
from mroipac.looks.Looks import Looks
inimg = isceobj.createImage()
inimg.load(intname + '.xml')
spl = os.path.splitext(intname)
ext = '.{0}alks_{1}rlks'.format(alks, rlks)
outFile = spl[0] + ext + spl[1]
lkObj = Looks()
lkObj.setDownLooks(alks)
lkObj.setAcrossLooks(rlks)
lkObj.setInputImage(inimg)
lkObj.setOutputFilename(outFile)
lkObj.looks()
print('Output: ', outFile)
return outFile
def multilook_old(intName, alks=5, rlks=15):
cmd = 'looks.py -i {0} -a {1} -r {2}'.format(intName,alks,rlks)
flag = os.system(cmd)
if flag:
raise Exception('Failed to multilook %s'%(intName))
spl = os.path.splitext(intName)
return '{0}.{1}alks_{2}rlks{3}'.format(spl[0],alks,rlks,spl[1])
def overlapSpectralSeparation(topBurstIfg, botBurstIfg, masterTop, masterBot, slaveTop, slaveBot, azTop, rgTop, azBot, rgBot, misreg=0.0):
'''
Estimate separation in frequency due to unit pixel misregistration.
'''
dt = topBurstIfg.azimuthTimeInterval
topStart = int(np.round((topBurstIfg.sensingStart - masterTop.sensingStart).total_seconds() / dt))
overlapLen = topBurstIfg.numberOfLines
botStart = int(np.round((botBurstIfg.sensingStart - masterBot.sensingStart).total_seconds() / dt))
##############
# master top : m1
azi = np.arange(topStart, topStart+overlapLen)[:,None] * np.ones((overlapLen, topBurstIfg.numberOfSamples))
rng = np.ones((overlapLen, topBurstIfg.numberOfSamples)) * np.arange(topBurstIfg.numberOfSamples)[None,:]
Vs = np.linalg.norm(masterTop.orbit.interpolateOrbit(masterTop.sensingMid, method='hermite').getVelocity())
Ks = 2 * Vs * masterTop.azimuthSteeringRate / masterTop.radarWavelength
rng = masterTop.startingRange + masterTop.rangePixelSize * rng
Ka = masterTop.azimuthFMRate(rng)
Ktm1 = Ks / (1.0 - Ks / Ka)
tm1 = (azi - (masterTop.numberOfLines//2)) * masterTop.azimuthTimeInterval
fm1 = masterTop.doppler(rng)
##############
# master bottom : m2
azi = np.arange(botStart, botStart + overlapLen)[:,None] * np.ones((overlapLen, botBurstIfg.numberOfSamples))
rng = np.ones((overlapLen, botBurstIfg.numberOfSamples)) * np.arange(botBurstIfg.numberOfSamples)[None,:]
Vs = np.linalg.norm(masterBot.orbit.interpolateOrbit(masterBot.sensingMid, method='hermite').getVelocity())
Ks = 2 * Vs * masterBot.azimuthSteeringRate / masterBot.radarWavelength
rng = masterBot.startingRange + masterBot.rangePixelSize * rng
Ka = masterBot.azimuthFMRate(rng)
Ktm2 = Ks / (1.0 - Ks / Ka)
tm2 = (azi - (masterBot.numberOfLines//2)) * masterBot.azimuthTimeInterval
fm2 = masterBot.doppler(rng)
##############
# slave top : s1
y = np.arange(topStart, topStart+overlapLen)[:,None] * np.ones((overlapLen, topBurstIfg.numberOfSamples))
x = np.ones((overlapLen, topBurstIfg.numberOfSamples)) * np.arange(topBurstIfg.numberOfSamples)[None,:]
yy = np.memmap( azTop, dtype=np.float32, mode='r',
shape=(topBurstIfg.numberOfLines, topBurstIfg.numberOfSamples))
xx = np.memmap( rgTop, dtype=np.float32, mode='r',
shape=(topBurstIfg.numberOfLines, topBurstIfg.numberOfSamples))
azi = y + yy + misreg
rng = x + xx
# print('Azi top: ', azi[0,0], azi[-1,-1])
# print('YY top: ', yy[0,0], yy[-1,-1])
# print('Rng top: ', rng[0,0], azi[-1,-1])
# print('XX top: ', xx[0,0], xx[-1,-1])
Vs = np.linalg.norm(slaveTop.orbit.interpolateOrbit(slaveTop.sensingMid, method='hermite').getVelocity())
Ks = 2 * Vs * slaveTop.azimuthSteeringRate / slaveTop.radarWavelength
rng = slaveTop.startingRange + slaveTop.rangePixelSize * rng
Ka = slaveTop.azimuthFMRate(rng)
Kts1 = Ks / (1.0 - Ks / Ka)
ts1 = (azi - (slaveTop.numberOfLines//2)) * slaveTop.azimuthTimeInterval
fs1 = slaveTop.doppler(rng)
##############
# slave bot : s2
y = np.arange(botStart, botStart + overlapLen)[:,None] * np.ones((overlapLen, botBurstIfg.numberOfSamples))
x = np.ones((overlapLen, botBurstIfg.numberOfSamples)) * np.arange(botBurstIfg.numberOfSamples)[None,:]
####Bottom slave
yy = np.memmap( azBot, dtype=np.float32, mode='r',
shape=(botBurstIfg.numberOfLines, botBurstIfg.numberOfSamples))
xx = np.memmap( rgBot, dtype=np.float32, mode='r',
shape=(botBurstIfg.numberOfLines, botBurstIfg.numberOfSamples))
azi = y + yy + misreg
rng = x + xx
# print('Azi bot: ', azi[0,0], azi[-1,-1])
# print('YY bot: ', yy[0,0], yy[-1,-1])
# print('Rng bot: ', rng[0,0], azi[-1,-1])
# print('XX bot: ', xx[0,0], xx[-1,-1])
Vs = np.linalg.norm(slaveBot.orbit.interpolateOrbit(slaveBot.sensingMid, method='hermite').getVelocity())
Ks = 2 * Vs * slaveBot.azimuthSteeringRate / slaveBot.radarWavelength
rng = slaveBot.startingRange + slaveBot.rangePixelSize * rng
Ka = slaveBot.azimuthFMRate(rng)
Kts2 = Ks / (1.0 - Ks / Ka)
ts2 = (azi - (slaveBot.numberOfLines//2)) * slaveBot.azimuthTimeInterval
fs2 = slaveBot.doppler(rng)
##############
frequencySeparation = -Ktm2*tm2 + Ktm1*tm1 + Kts1*ts1 - Kts2*ts2 + fm2 - fm1 + fs1 -fs2
# print('Ktm1: ', Ktm1[0,0], Ktm1[-1,-1])
# print('Ktm2: ', Ktm2[0,0], Ktm2[-1,-1])
# print('tm1 : ', tm1[0,0], tm1[-1,-1])
# print('tm2 : ', tm2[0,0], tm2[-1,-1])
# print('Kts1: ', Kts1[0,0], Kts1[-1,-1])
# print('Kts2: ', Kts2[0,0], Kts2[-1,-1])
# print('ts1 : ', ts1[0,0], ts2[-1,-1])
# print('ts2 : ', ts2[0,0], ts2[-1,-1])
# print('fm1 : ', fm1[0,0], fm1[-1,-1])
# print('fm2 : ', fm2[0,0], fm2[-1,-1])
# print('fs1 : ', fs1[0,0], fs1[-1,-1])
# print('fs2 : ', fs2[0,0], fs2[-1,-1])
return frequencySeparation
def createCoherence(intfile, win=5):
'''
Compute coherence using scipy convolve 2D.
'''
2019-12-16 18:22:01 +00:00
import scipy.signal as SS
2019-01-16 19:40:08 +00:00
corfile = os.path.splitext(intfile)[0] + '.cor'
filt = np.ones((win,win))/ (1.0*win*win)
inimg = IML.mmapFromISCE(intfile + '.xml', logging)
cJ = np.complex64(1.0j)
angle = np.exp(cJ * np.angle(inimg.bands[0]))
res = SS.convolve2d(angle, filt, mode='same')
res[0:win-1,:] = 0.0
res[-win+1:,:] = 0.0
res[:,0:win-1] = 0.0
res[:,-win+1:] = 0.0
res = np.abs(res)
with open(corfile, 'wb') as f:
res.astype(np.float32).tofile(f)
img = isceobj.createImage()
img.setFilename(corfile)
img.setWidth(res.shape[1])
img.setLength(res.shape[0])
img.dataType='FLOAT'
img.setAccessMode('READ')
img.renderHdr()
return corfile
def runPrepESD(self):
'''
Create additional layers for performing ESD.
'''
if not self.doESD:
return
swathList = self._insar.getValidSwathList(self.swaths)
for swath in swathList:
if self._insar.numberOfCommonBursts[swath-1] < 2:
print('Skipping prepesd for swath IW{0}'.format(swath))
continue
minBurst, maxBurst = self._insar.commonMasterBurstLimits(swath-1)
slaveBurstStart, slaveBurstEnd = self._insar.commonSlaveBurstLimits(swath-1)
####Load full products
master = self._insar.loadProduct( os.path.join(self._insar.masterSlcProduct, 'IW{0}.xml'.format(swath)))
slave = self._insar.loadProduct( os.path.join(self._insar.slaveSlcProduct, 'IW{0}.xml'.format(swath)))
####Estimate relative shifts
relShifts = getRelativeShifts(master, slave, minBurst, maxBurst, slaveBurstStart)
maxBurst = maxBurst - 1 ###For overlaps
####Load metadata for burst IFGs
ifgTop = self._insar.loadProduct( os.path.join(self._insar.coarseIfgOverlapProduct, 'top_IW{0}.xml'.format(swath)))
ifgBottom = self._insar.loadProduct( os.path.join(self._insar.coarseIfgOverlapProduct, 'bottom_IW{0}.xml'.format(swath)))
print('Relative shifts for swath {0}:'.format(swath))
pprint.pprint(relShifts)
####Create ESD output directory
esddir = self._insar.esdDirname
os.makedirs(esddir, exist_ok=True)
2019-01-16 19:40:08 +00:00
####Overlap offsets directory
offdir = os.path.join( self._insar.coarseOffsetsDirname, self._insar.overlapsSubDirname, 'IW{0}'.format(swath))
ifglist = []
factorlist = []
offsetlist = []
cohlist = []
for ii in range(minBurst, maxBurst):
ind = ii - minBurst ###Index into overlaps
sind = slaveBurstStart + ind ###Index into slave
topShift = relShifts[sind]
botShift = relShifts[sind+1]
topBurstIfg = ifgTop.bursts[ind]
botBurstIfg = ifgBottom.bursts[ind]
####Double difference interferograms
topInt = np.memmap( topBurstIfg.image.filename,
dtype=np.complex64, mode='r',
shape = (topBurstIfg.numberOfLines, topBurstIfg.numberOfSamples))
botInt = np.memmap( botBurstIfg.image.filename,
dtype=np.complex64, mode='r',
shape = (botBurstIfg.numberOfLines, botBurstIfg.numberOfSamples))
intName = os.path.join(esddir, 'overlap_IW%d_%02d.int'%(swath,ii+1))
freqName = os.path.join(esddir, 'freq_IW%d_%02d.bin'%(swath,ii+1))
with open(intName, 'wb') as fid:
fid.write( topInt * np.conj(botInt))
img = isceobj.createIntImage()
img.setFilename(intName)
img.setLength(topBurstIfg.numberOfLines)
img.setWidth(topBurstIfg.numberOfSamples)
img.setAccessMode('READ')
img.renderHdr()
multIntName= multilook(intName, alks = self.esdAzimuthLooks, rlks=self.esdRangeLooks)
ifglist.append(multIntName)
####Estimate coherence of double different interferograms
multCor = createCoherence(multIntName)
cohlist.append(multCor)
####Estimate the frequency difference
azTop = os.path.join(offdir, 'azimuth_top_%02d_%02d.off'%(ii+1,ii+2))
rgTop = os.path.join(offdir, 'range_top_%02d_%02d.off'%(ii+1,ii+2))
azBot = os.path.join(offdir, 'azimuth_bot_%02d_%02d.off'%(ii+1,ii+2))
rgBot = os.path.join(offdir, 'range_bot_%02d_%02d.off'%(ii+1,ii+2))
mFullTop = master.bursts[ii]
mFullBot = master.bursts[ii+1]
sFullTop = slave.bursts[sind]
sFullBot = slave.bursts[sind+1]
freqdiff = overlapSpectralSeparation(topBurstIfg, botBurstIfg, mFullTop, mFullBot, sFullTop, sFullBot, azTop, rgTop, azBot, rgBot)
with open(freqName, 'wb') as fid:
(freqdiff * 2 * np.pi * mFullTop.azimuthTimeInterval).astype(np.float32).tofile(fid)
img = isceobj.createImage()
img.setFilename(freqName)
img.setWidth(topBurstIfg.numberOfSamples)
img.setLength(topBurstIfg.numberOfLines)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.renderHdr()
multConstName = multilook(freqName, alks = self.esdAzimuthLooks, rlks = self.esdRangeLooks)
factorlist.append(multConstName)