ISCE_INSAR/contrib/stack/stripmapStack/rubberSheeting.py

320 lines
11 KiB
Python
Raw Normal View History

2019-01-16 19:40:08 +00:00
#!/usr/bin/env python3
# Heresh Fattahi
import numpy as np
import argparse
import os
import isce
import isceobj
import shelve
import gdal
import osr
from gdalconst import GA_ReadOnly
from scipy import ndimage
GDAL2NUMPY_DATATYPE = {
1 : np.uint8,
2 : np.uint16,
3 : np.int16,
4 : np.uint32,
5 : np.int32,
6 : np.float32,
7 : np.float64,
10: np.complex64,
11: np.complex128,
}
def createParser():
'''
Command line parser.
'''
parser = argparse.ArgumentParser( description='filters the densOffset, oversamples it and adds back to the geometry offset')
parser.add_argument('-a', '--geometry_azimuth_offset', dest='geometryAzimuthOffset', type=str, default=None,
help='The azimuth offsets file obtained with geometry')
parser.add_argument('-r', '--geometry_range_offset', dest='geometryRangeOffset', type=str, default=None,
help='The range offsets file obtained with geometry')
parser.add_argument('-d', '--dense_offset', dest='denseOffset', type=str, required=True,
help='The dense offsets file obtained from cross correlation or any other approach')
parser.add_argument('-s', '--snr', dest='snr', type=str, required=True,
help='The SNR of the dense offsets obtained from cross correlation or any other approach')
parser.add_argument('-n', '--filter_size', dest='filterSize', type=int, default=8,
help='The size of the median filter')
parser.add_argument('-t', '--snr_threshold', dest='snrThreshold', type=float, default=5,
help='The snr threshold used to mask the offset')
parser.add_argument('-A', '--output_azimuth_offset', dest='outAzimuth', type=str, default='azimuth_rubberSheet.off',
help='The azimuth offsets after rubber sheeting')
parser.add_argument('-R', '--output_range_offset', dest='outRange', type=str, default='range_rubberSheet.off',
help='The range offsets after rubber sheeting')
parser.add_argument('-o', '--output_directory', dest='outDir', type=str, default='./',
help='Output directory')
parser.add_argument('-p', '--plot', dest='plot', action='store_true', default=False,
help='plot the offsets before and after masking and filtering')
parser.add_argument('-c', '--clean', dest='clean', type=str, default='yes',
help='Cleaning the intermediate products. True or False. Deafult: yes')
return parser
def cmdLineParse(iargs = None):
parser = createParser()
return parser.parse_args(args=iargs)
def read(file, processor='ISCE' , bands=None , dataType=None):
''' raeder based on GDAL.
Args:
* file -> File name to be read
Kwargs:
* processor -> the processor used for the InSAR processing. default: ISCE
* bands -> a list of bands to be extracted. If not specified all bands will be extracted.
* dataType -> if not specified, it will be extracted from the data itself
Returns:
* data : A numpy array with dimensions : number_of_bands * length * width
'''
if processor == 'ISCE':
cmd = 'isce2gis.py envi -i ' + file
os.system(cmd)
dataset = gdal.Open(file,GA_ReadOnly)
######################################
# if the bands have not been specified, all bands will be extracted
if bands is None:
bands = range(1,dataset.RasterCount+1)
######################################
# if dataType is not known let's get it from the data:
if dataType is None:
band = dataset.GetRasterBand(1)
dataType = GDAL2NUMPY_DATATYPE[band.DataType]
######################################
# Form a numpy array of zeros with the the shape of (number of bands * length * width) and a given data type
data = np.zeros((len(bands), dataset.RasterYSize, dataset.RasterXSize),dtype=dataType)
######################################
# Fill the array with the Raster bands
idx=0
for i in bands:
band=dataset.GetRasterBand(i)
data[idx,:,:] = band.ReadAsArray()
idx+=1
dataset = None
return data
def write(raster, fileName, nbands, bandType):
############
# Create the file
driver = gdal.GetDriverByName( 'ENVI' )
dst_ds = driver.Create(fileName, raster.shape[1], raster.shape[0], nbands, bandType )
dst_ds.GetRasterBand(1).WriteArray( raster, 0 ,0 )
dst_ds = None
def mask_filter(inps, band, outName, plot=False):
#masking and Filtering
Offset = read(inps.denseOffset, bands=band)
Offset = Offset[0,:,:]
snr = read(inps.snr, bands=[1])
snr = snr[0,:,:]
# Masking the dense offsets based on SNR
print ('masking the dense offsets with SNR threshold: ', inps.snrThreshold)
Offset[snr<inps.snrThreshold] = 0
####################
iteration = 3
for i in range(iteration):
print ('iteration: ',i)
Offset[snr<inps.snrThreshold] = np.nan
Offset = fill(Offset)
Offset = ndimage.median_filter(Offset, size=inps.filterSize)
write(Offset, outName, 1, 6)
length, width = Offset.shape
####################
'''
# Median filtering the masked offsets
print ('Filtering with median filter with size : ', inps.filterSize)
Offset_filt = ndimage.median_filter(Offset, size=inps.filterSize)
width = Offset_filt.shape[1]
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
write(Offset_filt, outName, 1, 6)
'''
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
#img.createImage()
img.renderHdr()
img.renderVRT()
#img.finalizeImage()
################################
if plot:
import matplotlib.pyplot as plt
fig = plt.figure()
ax=fig.add_subplot(1,2,1)
# cax=ax.imshow(azOffset[800:,:], vmin=-2, vmax=4)
cax=ax.imshow(Offset, vmin=-2, vmax=4)
ax.set_title('''Offset''')
ax=fig.add_subplot(1,2,2)
#ax.imshow(azOffset_filt[800:,:], vmin=-2, vmax=4)
ax.imshow(Offset_filt, vmin=-2, vmax=4)
ax.set_title('''Offset filt''')
plt.show()
def fill(data, invalid=None):
"""
Replace the value of invalid 'data' cells (indicated by 'invalid')
by the value of the nearest valid data cell
Input:
data: numpy array of any dimension
invalid: a binary array of same shape as 'data'.
data value are replaced where invalid is True
If None (default), use: invalid = np.isnan(data)
Output:
Return a filled array.
"""
if invalid is None: invalid = np.isnan(data)
ind = ndimage.distance_transform_edt(invalid,
return_distances=False,
return_indices=True)
return data[tuple(ind)]
def getShape(file):
dataset = gdal.Open(file,GA_ReadOnly)
return dataset.RasterYSize, dataset.RasterXSize
def resampleOffset(maskedFiltOffset, geometryOffset, resampledOffset, outName):
length, width = getShape(geometryOffset)
print('oversampling the filtered and masked offsets to the width and length:', width, ' ', length )
cmd = 'gdal_translate -of ENVI -outsize ' + str(width) + ' ' + str(length) + ' ' + maskedFiltOffset + ' ' + resampledOffset
os.system(cmd)
img = isceobj.createImage()
img.setFilename(resampledOffset)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
#img.createImage()
img.renderHdr()
img.renderVRT()
#img.finalizeImage()
print ('Adding the dense offsets to the geometry offsets. Output: ', outName)
#cmd = "imageMath.py -e='a+b' -o " + outName + " -t float --a=" + geometryOffset + " --b=" + resampledOffset + " -s BIP -t double"
#os.system(cmd)
# Using gdal_calc seems faster
# gdal_calc.py -A 20091219_20100321_usingCoarseCoreg/filtRngOff_resampled.bil -B ../offsets/20100321/range.off --outfile=range_sum.off --calc="A+B" --format=ENVI --type=Float64
cmd = "gdal_calc.py -A " + geometryOffset + " -B " + resampledOffset + " --outfile=" + outName + ' --calc="A+B" --format=ENVI --type=Float64'
print (cmd)
os.system(cmd)
def main(iargs=None):
inps = cmdLineParse(iargs)
if inps.geometryAzimuthOffset:
#######################
# working on the azimuth offsets
#######################
cmd = 'isce2gis.py envi -i ' + inps.geometryAzimuthOffset
os.system(cmd)
if not os.path.exists(inps.outDir):
os.makedirs(inps.outDir)
#######################
# masking the dense offsets based on SNR and median filter the masked offsets
maskedFiltOffset = os.path.join(inps.outDir, 'filtAzOff.bil')
mask_filter(inps, band=[1], outName = maskedFiltOffset, plot=inps.plot)
cmd = 'isce2gis.py envi -i ' + maskedFiltOffset
os.system(cmd)
#######################
# resampling the masked and filtered dense offsets to the same
# grid size of the geometry offsets and adding back to the
# geometry offsets
outAzimuth = os.path.join(inps.outDir, inps.outAzimuth)
resampledDenseOffset = os.path.join(inps.outDir, 'filtAzOff_resampled.bil')
resampleOffset(maskedFiltOffset, inps.geometryAzimuthOffset, resampledDenseOffset, outAzimuth)
#######################
if inps.clean in ['y','yes','Yes','YES','Y']:
print ('Cleaning the intermediate prodcuts.')
cmd = 'rm ' + resampledDenseOffset + ' ' + resampledDenseOffset + '.xml '
os.system(cmd)
cmd = 'rm ' + maskedFiltOffset + ' ' + maskedFiltOffset + '.xml ' + os.path.dirname(maskedFiltOffset) + '/*.hdr'
os.system(cmd)
if inps.geometryRangeOffset:
#######################
# working on the range offsets
#######################
cmd = 'isce2gis.py envi -i ' + inps.geometryRangeOffset
os.system(cmd)
if not os.path.exists(inps.outDir):
os.makedirs(inps.outDir)
#######################
# masking the dense offsets based on SNR and median filter the masked offsets
maskedFiltOffset = os.path.join(inps.outDir, 'filtRngOff.bil')
mask_filter(inps, band=[2], outName = maskedFiltOffset, plot=inps.plot)
cmd = 'isce2gis.py envi -i ' + maskedFiltOffset
os.system(cmd)
#######################
# resampling the masked and filtered dense offsets to the same grid size of the geometry offsets
outRange = os.path.join(inps.outDir, inps.outRange)
resampledDenseOffset = os.path.join(inps.outDir, 'filtRngOff_resampled.bil')
resampleOffset(maskedFiltOffset, inps.geometryRangeOffset, resampledDenseOffset, outRange)
if inps.clean in ['y','yes','Yes','YES','Y']:
print ('Cleaning the intermediate prodcuts.')
cmd = 'rm ' + resampledDenseOffset + ' ' + resampledDenseOffset + '.xml '
os.system(cmd)
cmd = 'rm ' + maskedFiltOffset + ' ' + maskedFiltOffset + '.xml ' + os.path.dirname(maskedFiltOffset) + '/*.hdr'
os.system(cmd)
if __name__ == '__main__':
'''
Main driver.
'''
main()