ISCE_INSAR/components/isceobj/Sensor/ERS_EnviSAT_SLC.py

623 lines
22 KiB
Python
Raw Normal View History

2019-01-16 19:40:08 +00:00
#!/usr/bin/env python3
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# United States Government Sponsorship acknowledged. This software is subject to
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
# (No [Export] License Required except when exporting to an embargoed country,
# end user, or in support of a prohibited end use). By downloading this software,
# the user agrees to comply with all applicable U.S. export laws and regulations.
# The user has the responsibility to obtain export licenses, or other export
# authority as may be required before exporting this software to any 'EAR99'
# embargoed foreign country or citizen of those countries.
#
# Author: Walter Szeliga
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import re
import os
import copy
import numpy as np
import struct
import datetime
import logging
import isceobj
from isceobj import *
import ctypes
from isceobj.Planet.Planet import Planet
from isceobj.Orbit.Orbit import Orbit
from isceobj.Orbit.Orbit import StateVector
from isceobj.Planet.AstronomicalHandbook import Const
from isceobj.Scene.Frame import Frame
from isceobj.Scene.Track import Track
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTUtil
from iscesys.Component.Component import Component
ORBIT_TYPE = Component.Parameter('_orbitType',
public_name='ORBIT_TYPE',
default='',
type=str,
mandatory=True,
doc="Options: ODR, PRC, PDS"
)
ORBIT_DIRECTORY = Component.Parameter('_orbitDir',
public_name='ORBIT_DIRECTORY',
default='',
type=str,
mandatory=False,
doc="Path to the directory containing the orbit files."
)
ORBITFILE = Component.Parameter('_orbitFile',
public_name='ORBITFILE',
default='',
type=str,
mandatory=False,
doc='Only used with PDS ORBIT_TYPE'
)
IMAGEFILE = Component.Parameter(
'_imageFileName',
public_name='IMAGEFILE',
default='',
type=str,
mandatory=True,
intent='input',
doc='Input image file.'
)
from .Sensor import Sensor
class ERS_EnviSAT_SLC(Sensor):
parameter_list = (ORBIT_TYPE,
ORBIT_DIRECTORY,
ORBITFILE,
IMAGEFILE) + Sensor.parameter_list
"""
A Class for parsing ERS instrument and imagery files (Envisat format)
"""
family = 'ers'
logging_name = 'isce.sensor.ers_envisat_slc'
def __init__(self,family='',name=''):
super(ERS_EnviSAT_SLC, self).__init__(family if family else self.__class__.family, name=name)
self._imageFile = None
#self._instrumentFileData = None #none for ERS
self._imageryFileData = None
self.dopplerRangeTime = None
self.rangeRefTime = None
self.logger = logging.getLogger("isce.sensor.ERS_EnviSAT_SLC")
self.frame = None
self.frameList = []
#NOTE: copied from ERS_SLC.py... only antennaLength used? -SH
# Constants are from
# J. J. Mohr and S. N. Madsen. Geometric calibration of ERS satellite
# SAR images. IEEE T. Geosci. Remote, 39(4):842-850, Apr. 2001.
self.constants = {'polarization': 'VV',
'antennaLength': 10,
'lookDirection': 'RIGHT',
'chirpPulseBandwidth': 15.50829e6,
'rangeSamplingRate': 18.962468e6,
'delayTime':6.622e-6,
'iBias': 15.5,
'qBias': 15.5}
def getFrame(self):
return self.frame
def parse(self):
"""
Parse both imagery and create
objects representing the platform, instrument and scene
"""
self.frame = Frame()
self.frame.configure()
self._imageFile = ImageryFile(fileName=self._imageFileName)
self._imageryFileData = self._imageFile.parse()
self.populateMetadata()
def populateMetadata(self):
self._populatePlatform()
self._populateInstrument()
self._populateFrame()
#self._populateOrbit()
if (self._orbitType == 'ODR'):
self._populateDelftOrbits()
elif (self._orbitType == 'PRC'):
self._populatePRCOrbits()
elif (self._orbitType == 'PDS'):
self._populatePDSOrbits()
#else:
# self._populateHeaderOrbit() #NOTE: No leader file
#NOTE: remove?
self.dopplerRangeTime = self._imageryFileData['doppler']
self.rangeRefTime = self._imageryFileData['dopplerOrigin'][0] * 1.0e-9
# print('Doppler confidence: ', 100.0 * self._imageryFileData['dopplerConfidence'][0])
def _populatePlatform(self):
"""Populate the platform object with metadata"""
platform = self.frame.getInstrument().getPlatform()
# Populate the Platform and Scene objects
platform.setMission("ERS")
platform.setPointingDirection(-1)
platform.setAntennaLength(self.constants['antennaLength'])
platform.setPlanet(Planet(pname="Earth"))
def _populateInstrument(self):
"""Populate the instrument object with metadata"""
instrument = self.frame.getInstrument()
rangeSampleSpacing = Const.c/(2*self._imageryFileData['rangeSamplingRate'])
pri = self._imageryFileData['pri']
####These shouldnt matter for SLC data since data is already focused.
txPulseLength = 512 / 19207680.000000
chirpPulseBandwidth = 16.0e6
chirpSlope = chirpPulseBandwidth/txPulseLength
instrument.setRangePixelSize(rangeSampleSpacing)
instrument.setPulseLength(txPulseLength)
#instrument.setSwath(imageryFileData['SWATH'])
instrument.setRadarFrequency(self._imageryFileData['radarFrequency'])
instrument.setChirpSlope(chirpSlope)
instrument.setRangeSamplingRate(self._imageryFileData['rangeSamplingRate'])
instrument.setPulseRepetitionFrequency(1.0/pri)
#instrument.setRangeBias(rangeBias)
instrument.setInPhaseValue(self.constants['iBias'])
instrument.setQuadratureValue(self.constants['qBias'])
def _populateFrame(self):
"""Populate the scene object with metadata"""
numberOfLines = self._imageryFileData['numLines']
numberOfSamples = self._imageryFileData['numSamples']
pri = self._imageryFileData['pri']
startingRange = Const.c * float(self._imageryFileData['timeToFirstSample']) * 1.0e-9 / 2.0
rangeSampleSpacing = Const.c/(2*self._imageryFileData['rangeSamplingRate'])
farRange = startingRange + numberOfSamples*rangeSampleSpacing
first_line_utc = datetime.datetime.strptime(self._imageryFileData['FIRST_LINE_TIME'], '%d-%b-%Y %H:%M:%S.%f')
center_line_utc = datetime.datetime.strptime(self._imageryFileData['FIRST_LINE_TIME'], '%d-%b-%Y %H:%M:%S.%f')
last_line_utc = datetime.datetime.strptime(self._imageryFileData['LAST_LINE_TIME'], '%d-%b-%Y %H:%M:%S.%f')
centerTime = DTUtil.timeDeltaToSeconds(last_line_utc-first_line_utc)/2.0
center_line_utc = center_line_utc + datetime.timedelta(microseconds=int(centerTime*1e6))
self.frame.setStartingRange(startingRange)
self.frame.setFarRange(farRange)
self.frame.setProcessingFacility(self._imageryFileData['PROC_CENTER'])
self.frame.setProcessingSystem(self._imageryFileData['SOFTWARE_VER'])
self.frame.setTrackNumber(int(self._imageryFileData['REL_ORBIT']))
self.frame.setOrbitNumber(int(self._imageryFileData['ABS_ORBIT']))
self.frame.setPolarization(self._imageryFileData['MDS1_TX_RX_POLAR'])
self.frame.setNumberOfSamples(numberOfSamples)
self.frame.setNumberOfLines(numberOfLines)
self.frame.setSensingStart(first_line_utc)
self.frame.setSensingMid(center_line_utc)
self.frame.setSensingStop(last_line_utc)
def _populateDelftOrbits(self):
"""Populate an orbit object with the Delft orbits"""
from isceobj.Orbit.ODR import ODR, Arclist
self.logger.info("Using Delft Orbits")
arclist = Arclist(os.path.join(self._orbitDir,'arclist'))
arclist.parse()
print(self.frame.getSensingStart())
print(arclist)
orbitFile = arclist.getOrbitFile(self.frame.getSensingStart())
#print(orbitFile)
odr = ODR(file=os.path.join(self._orbitDir,orbitFile))
startTimePreInterp = self.frame.getSensingStart() - datetime.timedelta(minutes=60)
stopTimePreInterp = self.frame.getSensingStop() + datetime.timedelta(minutes=60)
odr.parseHeader(startTimePreInterp,stopTimePreInterp)
startTime = self.frame.getSensingStart() - datetime.timedelta(minutes=5)
stopTime = self.frame.getSensingStop() + datetime.timedelta(minutes=5)
self.logger.debug("Extracting orbits between %s and %s" % (startTime,stopTime))
orbit = odr.trimOrbit(startTime,stopTime)
self.frame.setOrbit(orbit)
def _populatePRCOrbits(self):
"""Populate an orbit object the D-PAF PRC orbits"""
from isceobj.Orbit.PRC import PRC, Arclist
self.logger.info("Using PRC Orbits")
arclist = Arclist(os.path.join(self._orbitDir,'arclist'))
arclist.parse()
orbitFile = arclist.getOrbitFile(self.frame.getSensingStart())
self.logger.debug("Using file %s" % (orbitFile))
prc = PRC(file=os.path.join(self._orbitDir,orbitFile))
prc.parse()
startTime = self.frame.getSensingStart() - datetime.timedelta(minutes=5)
stopTime = self.frame.getSensingStop() + datetime.timedelta(minutes=5)
self.logger.debug("Extracting orbits between %s and %s" % (startTime,stopTime))
fullOrbit = prc.getOrbit()
orbit = fullOrbit.trimOrbit(startTime,stopTime)
self.frame.setOrbit(orbit)
def _populatePDSOrbits(self):
"""
Populate an orbit object using the ERS-2 PDS format
"""
from isceobj.Orbit.PDS import PDS
self.logger.info("Using PDS Orbits")
pds = PDS(file=self._orbitFile)
pds.parse()
startTime = self.frame.getSensingStart() - datetime.timedelta(minutes=5)
stopTime = self.frame.getSensingStop() + datetime.timedelta(minutes=5)
self.logger.debug("Extracting orbits between %s and %s" % (startTime,stopTime))
fullOrbit = pds.getOrbit()
orbit = fullOrbit.trimOrbit(startTime,stopTime)
self.frame.setOrbit(orbit)
def _populateImage(self,outname,width,length):
#farRange = self.frame.getStartingRange() + width*self.frame.getInstrument().getRangeSamplingRate()
# Update the NumberOfSamples and NumberOfLines in the Frame object
self.frame.setNumberOfSamples(width)
self.frame.setNumberOfLines(length)
#self.frame.setFarRange(farRange)
# Create a RawImage object
rawImage = createSlcImage()
rawImage.setFilename(outname)
rawImage.setAccessMode('read')
rawImage.setByteOrder('l')
rawImage.setXmin(0)
rawImage.setXmax(width)
rawImage.setWidth(width)
self.frame.setImage(rawImage)
def extractImage(self):
from datetime import datetime as dt
import tempfile as tf
self.parse()
width = self._imageryFileData['numSamples']
length = self._imageryFileData['numLines']
self._imageFile.extractImage(self.output, width, length)
self._populateImage(self.output, width, length)
pass
def extractDoppler(self):
"""
Return the doppler centroid as defined in the ASAR file.
"""
quadratic = {}
r0 = self.frame.getStartingRange()
dr = self.frame.instrument.getRangePixelSize()
width = self.frame.getNumberOfSamples()
midr = r0 + (width/2.0) * dr
midtime = 2 * midr/ Const.c - self.rangeRefTime
fd_mid = 0.0
tpow = midtime
for kk in self.dopplerRangeTime:
fd_mid += kk * tpow
tpow *= midtime
####For insarApp
quadratic['a'] = fd_mid/self.frame.getInstrument().getPulseRepetitionFrequency()
quadratic['b'] = 0.
quadratic['c'] = 0.
####For roiApp
####More accurate
from isceobj.Util import Poly1D
coeffs = self.dopplerRangeTime
dr = self.frame.getInstrument().getRangePixelSize()
rref = 0.5 * Const.c * self.rangeRefTime
r0 = self.frame.getStartingRange()
norm = 0.5*Const.c/dr
dcoeffs = []
for ind, val in enumerate(coeffs):
dcoeffs.append( val / (norm**ind))
poly = Poly1D.Poly1D()
poly.initPoly(order=len(coeffs)-1)
poly.setMean( (rref - r0)/dr - 1.0)
poly.setCoeffs(dcoeffs)
pix = np.linspace(0, self.frame.getNumberOfSamples(), num=len(coeffs)+1)
evals = poly(pix)
fit = np.polyfit(pix,evals, len(coeffs)-1)
self.frame._dopplerVsPixel = list(fit[::-1])
print('Doppler Fit: ', fit[::-1])
return quadratic
class BaseEnvisatFile(object):
"""Class for parsing common Envisat-format metadata"""
def __init__(self):
self.fp = None
self.mphLength = 1247
self.sphLength = None
self.mph = {}
self.sph = {}
def readMPH(self):
"""Unpack the Main Product Header (MPH)"""
mphString = self.fp.read(self.mphLength)
header = mphString.splitlines()
for line in header:
(key, sep, value) = line.decode('utf8').partition('=')
if (key.isspace() == False):
value = str.replace(value,'"','')
value = str.strip(value)
self.mph[key] = value
# Grab the length of the SPH section
self.sphLength = self._extractValue(value=self.mph['SPH_SIZE'], type=int)
def readSPH(self):
"""Unpack the Specific Product Header (SPH)"""
self.fp.seek(self.mphLength)
sphString = self.fp.read(self.sphLength)
header = sphString.splitlines()
dsSeen = False
dataSet = {}
dataSets = []
# the Specific Product Header is made of up key-value pairs.
# At the end of the header, there are a number of data blocks that
# represent the data sets that follow. Since their key names are
# not unique, we need to capture them in an array and then tack
# this array on the dictionary later. These data sets begin with
# a key named "DS_NAME"
for line in header:
(key, sep, value) = line.decode('utf8').partition('=')
if (key.isspace() == False):
value = str.replace(value,'"','')
value = str.strip(value)
# Check to see if we are reading a Data Set record
if ((key == 'DS_NAME') and (dsSeen == False)):
dsSeen = True
if (dsSeen == False):
self.sph[key] = value
else:
dataSet[key] = value
if (key == 'DSR_SIZE'):
dataSets.append(copy.copy(dataSet))
self.sph['dataSets'] = dataSets
def _readAndUnpackData(self, length=None, format=None, type=None, numberOfFields=1):
"""
Convenience method for reading and unpacking data.
length is the length of the field in bytes [required]
format is the format code to use in struct.unpack() [required]
numberOfFields is the number of fields expected from the call to struct.unpack() [default = 1]
type is the function through which the output of struct.unpack will be passed [default = None]
"""
line = self.fp.read(length)
data = struct.unpack(format, line)
if (numberOfFields == 1):
data = data[0]
if (type):
try:
data = type(data)
except ValueError:
pass
return data
def _extractValue(self,value=None,type=None):
"""
Some MPH and SPH fields have units appended to the value in the form of:
124<bytes>. This method strips off the units and returns a value of the
correct type.
"""
matches = re.search("([+-]?[\w\.]+)<[\w/]+>",value)
answer = matches.group(1)
if (answer == None):
print("No Matches Found")
return
if (type != None):
answer = type(answer)
return answer
class ImageryFile(BaseEnvisatFile):
"""Parse an Envisat Imagery File"""
def __init__(self, fileName=None):
BaseEnvisatFile.__init__(self)
self.fileName = fileName
self.sqLength = 170
self.procParamLength = None
self.doppParamLength = 55
self.chirpParamLength = 1483
self.geoParamLength = None
def parse(self):
import pprint
imageryDict = {}
try:
self.fp = open(self.fileName, 'rb')
except IOError as errs:
errno,strerr = errs
print("IOError: %s %s" % (strerr,self.fileName))
return
self.readMPH()
self.readSPH()
####Handling software version change in 6.02
ver = float(self.mph['SOFTWARE_VER'].strip()[-4:])
'''
if ver < 6.02:
print('Old ESA Software version: ', ver)
self.procParamLength = 2009
self.geoParamLength = 521*12
else:
print('New ESA Software version: ', ver)
self.procParamLength = 10069
self.geoParamLength = 521*13
'''
print('ESA Software Version: ', ver)
self.procParamLength = 10069 #new ERS envisat format, despite software version 6.0 has new metadata format?
self.geoParamLength = 521*13
procDict = self.readProcParams()
doppDict = self.readDopplerParams()
geoDict = self.readGeoParams()
self.fp.close()
imageryDict.update(self.mph)
imageryDict.update(self.sph)
imageryDict.update(procDict)
imageryDict.update(doppDict)
imageryDict.update(geoDict)
return imageryDict
def getTotalHeaderLength(self):
headerLength = self.mphLength + self.sphLength + self.sqLength +\
self.procParamLength + self.doppParamLength + self.chirpParamLength +\
self.geoParamLength
return headerLength
def extractImage(self, outname, width, length):
try:
self.fp = open(self.fileName, 'rb')
except IOError as errs:
errno,strerr = errs
print("IOError: %s %s" % (strerr,self.fileName))
return
self.fp.seek(self.getTotalHeaderLength())
fout = open(outname, 'wb')
for kk in range(length):
if ((kk+1) %1000 == 0):
print('Extracted line: %d'%(kk+1))
rec = self.fp.read(17)
# num = struct.unpack(">L", rec[13:17])[0]
line = np.fromfile(self.fp, dtype='>h', count=2*width)
line.astype(np.float32).tofile(fout)
fout.close()
self.fp.close()
return
def readProcParams(self):
"""Unpack information from the processing parameters dataset"""
headerLength = self.mphLength + self.sphLength + self.sqLength
self.fp.seek(headerLength)
record = self.fp.read(self.procParamLength)
procDict = {}
procDict['mdsFirstTime'] = struct.unpack(">3L",record[:12])
procDict['mdsLastTime'] = struct.unpack(">3L", record[13:25])
procDict['timeDiffSensing'] = struct.unpack(">f",record[37:41])[0]
procDict['rangeSpacing'] = struct.unpack(">f",record[44:48])[0]
procDict['azimuthSpacing'] = struct.unpack(">f",record[48:52])[0]
procDict['pri'] = struct.unpack(">f", record[52:56])[0]
procDict['numLines'] = int(struct.unpack(">L", record[56:60])[0])
procDict['numSamples'] = int(struct.unpack(">L", record[60:64])[0])
procDict['timeDiffZeroDoppler'] = struct.unpack(">f", record[73:77])[0]
procDict['firstProcSample'] = int(struct.unpack(">L", record[975:979])[0])
procDict['referenceRange'] = struct.unpack(">f", record[979:983])[0]
procDict['rangeSamplingRate'] = struct.unpack(">f", record[983:987])[0]
procDict['radarFrequency'] = struct.unpack(">f", record[987:991])[0]
procDict['azimuthFMRate'] = struct.unpack(">3f",record[1289:1301])
procDict['azimuthFMOrigin'] = struct.unpack(">f", record[1301:1305])[0]
procDict['averageEllipiseHeight'] = struct.unpack(">f", record[1537:1541])[0]
####State vectors starting from 1761
return procDict
def readDopplerParams(self):
"""Unpack information from the doppler coefficients dataset"""
headerLength = self.mphLength + self.sphLength + self.sqLength + self.procParamLength
self.fp.seek(headerLength)
record = self.fp.read(self.doppParamLength)
doppDict = {}
doppDict['dopTime'] = struct.unpack(">3L", record[:12])
doppDict['dopplerOrigin'] = struct.unpack(">f", record[13:17])
doppDict['doppler'] = struct.unpack(">5f",record[17:37])
doppDict['dopplerConfidence'] = struct.unpack(">f", record[37:41])
doppDict['dopplerDeltas'] = struct.unpack(">5h",record[42:52])
return doppDict
def readGeoParams(self):
'''Unpack information regarding starting range.'''
headerLength = self.mphLength + self.sphLength + self.sqLength +\
self.procParamLength + self.doppParamLength + self.chirpParamLength
self.fp.seek(headerLength + 25+44)
record = self.fp.read(4)
geoDict = {}
geoDict['timeToFirstSample'] = struct.unpack(">f",record)[0]
return geoDict
class ImageOutput():
"""An object to represent the output struct from asa_im_decode"""
def __init__(self, samples, lines):
self.samples = samples
self.lines = lines