193 lines
5.8 KiB
Python
193 lines
5.8 KiB
Python
|
#
|
||
|
# Author: Heresh Fattahi
|
||
|
# Copyright 2017
|
||
|
#
|
||
|
import logging
|
||
|
import isceobj
|
||
|
from contrib.splitSpectrum import SplitRangeSpectrum as splitSpectrum
|
||
|
import numpy as np
|
||
|
import os
|
||
|
from isceobj.Constants import SPEED_OF_LIGHT
|
||
|
import time
|
||
|
|
||
|
|
||
|
logger = logging.getLogger('isce.insar.runSplitSpectrum')
|
||
|
|
||
|
def split(fullBandSlc, lowBandSlc, highBandSlc, fs, bL, bH, fL, fH):
|
||
|
|
||
|
ss = splitSpectrum()
|
||
|
|
||
|
ss.blocksize = 100
|
||
|
ss.memsize = 512
|
||
|
ss.inputDS = fullBandSlc + ".vrt"
|
||
|
ss.lbDS = lowBandSlc
|
||
|
ss.hbDS = highBandSlc
|
||
|
ss.rangeSamplingRate = fs
|
||
|
ss.lowBandWidth = bL
|
||
|
ss.highBandWidth = bH
|
||
|
ss.lowCenterFrequency = fL
|
||
|
ss.highCenterFrequency = fH
|
||
|
|
||
|
ss.split()
|
||
|
|
||
|
def createSlcImage(slcName, width):
|
||
|
|
||
|
slc = isceobj.createSlcImage()
|
||
|
slc.setWidth(width)
|
||
|
slc.filename = slcName
|
||
|
slc.setAccessMode('write')
|
||
|
slc.renderHdr()
|
||
|
|
||
|
|
||
|
def adjustCenterFrequency(B, N, dc):
|
||
|
|
||
|
# because of quantization, there may not be an index representing dc. We
|
||
|
# therefore adjust dc to make sure that there is an index to represent it.
|
||
|
# We find the index that is closest to nominal dc and then adjust dc to the
|
||
|
# frequency of that index.
|
||
|
# B = full band-width
|
||
|
# N = length of signal
|
||
|
# dc = center frequency of the sub-band
|
||
|
|
||
|
df = B/N
|
||
|
if (dc < 0):
|
||
|
ind = N + np.round(dc/df)
|
||
|
|
||
|
else:
|
||
|
ind = np.round(dc/df);
|
||
|
|
||
|
dc = frequency (B, N, ind)
|
||
|
|
||
|
return dc
|
||
|
|
||
|
|
||
|
def frequency (B, N, n):
|
||
|
# calculates frequency at a given index.
|
||
|
# Assumption: for indices 0 to (N-1)/2, frequency is positive
|
||
|
# and for indices larger than (N-1)/2 frequency is negative
|
||
|
|
||
|
#frequency interval given B as the total bandwidth
|
||
|
df = B/N
|
||
|
middleIndex = int((N-1)/2)
|
||
|
|
||
|
if (n > middleIndex):
|
||
|
f = (n-N)*df
|
||
|
|
||
|
else:
|
||
|
f = n*df
|
||
|
|
||
|
return f
|
||
|
|
||
|
|
||
|
def runSplitSpectrum(self):
|
||
|
'''
|
||
|
Generate split spectrum SLCs.
|
||
|
'''
|
||
|
|
||
|
if not self.doSplitSpectrum:
|
||
|
print('Split spectrum processing not requested. Skipping ....')
|
||
|
return
|
||
|
|
||
|
referenceFrame = self._insar.loadProduct( self._insar.referenceSlcCropProduct)
|
||
|
secondaryFrame = self._insar.loadProduct( self._insar.secondarySlcCropProduct)
|
||
|
|
||
|
referenceSlc = referenceFrame.getImage().filename
|
||
|
secondarySlc = secondaryFrame.getImage().filename
|
||
|
|
||
|
width1 = referenceFrame.getImage().getWidth()
|
||
|
width2 = secondaryFrame.getImage().getWidth()
|
||
|
|
||
|
fs_reference = referenceFrame.rangeSamplingRate
|
||
|
pulseLength_reference = referenceFrame.instrument.pulseLength
|
||
|
chirpSlope_reference = referenceFrame.instrument.chirpSlope
|
||
|
|
||
|
#Bandwidth
|
||
|
B_reference = np.abs(chirpSlope_reference)*pulseLength_reference
|
||
|
|
||
|
fs_secondary = secondaryFrame.rangeSamplingRate
|
||
|
pulseLength_secondary = secondaryFrame.instrument.pulseLength
|
||
|
chirpSlope_secondary = secondaryFrame.instrument.chirpSlope
|
||
|
|
||
|
#Bandwidth
|
||
|
B_secondary = np.abs(chirpSlope_secondary)*pulseLength_secondary
|
||
|
|
||
|
print("reference image range sampling rate: {0} MHz".format(fs_reference/(1.0e6)))
|
||
|
print("secondary image range sampling rate: {0} MHz".format(fs_secondary/(1.0e6)))
|
||
|
|
||
|
|
||
|
print("reference image total range bandwidth: {0} MHz".format(B_reference/(1.0e6)))
|
||
|
print("secondary image total range bandwidth: {0} MHz".format(B_secondary/(1.0e6)))
|
||
|
|
||
|
|
||
|
# If the bandwidth of reference and secondary are different, choose the smaller bandwidth
|
||
|
# for range split spectrum
|
||
|
B = np.min([B_secondary, B_reference])
|
||
|
print("Bandwidth used for split spectrum: {0} MHz".format(B/(1.e6)))
|
||
|
|
||
|
# Dividing the total bandwidth of B to three bands and consider the sub bands on
|
||
|
# the most left and right hand side as the spectrum of low band and high band SLCs
|
||
|
|
||
|
# band width of the low-band
|
||
|
bL = B/3.0
|
||
|
|
||
|
# band width of the high-band
|
||
|
bH = B/3.0
|
||
|
|
||
|
# center frequency of the low-band
|
||
|
fL = -1.0*B/3.0
|
||
|
|
||
|
# center frequency of the high-band
|
||
|
fH = B/3.0
|
||
|
|
||
|
lowBandDir = os.path.join(self.insar.splitSpectrumDirname, self.insar.lowBandSlcDirname)
|
||
|
highBandDir = os.path.join(self.insar.splitSpectrumDirname, self.insar.highBandSlcDirname)
|
||
|
|
||
|
os.makedirs(lowBandDir, exist_ok=True)
|
||
|
os.makedirs(highBandDir, exist_ok=True)
|
||
|
|
||
|
referenceLowBandSlc = os.path.join(lowBandDir, os.path.basename(referenceSlc))
|
||
|
referenceHighBandSlc = os.path.join(highBandDir, os.path.basename(referenceSlc))
|
||
|
|
||
|
secondaryLowBandSlc = os.path.join(lowBandDir, os.path.basename(secondarySlc))
|
||
|
secondaryHighBandSlc = os.path.join(highBandDir, os.path.basename(secondarySlc))
|
||
|
|
||
|
radarWavelength = referenceFrame.radarWavelegth
|
||
|
|
||
|
print("deviation of low-band's center frequency from full-band's center frequency: {0} MHz".format(fL/1.0e6))
|
||
|
|
||
|
print("deviation of high-band's center frequency from full-band's center frequency: {0} MHz".format(fH/1.0e6))
|
||
|
|
||
|
print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
|
||
|
print("splitting the range-spectrum of reference SLC")
|
||
|
split(referenceSlc, referenceLowBandSlc, referenceHighBandSlc, fs_reference, bL, bH, fL, fH)
|
||
|
print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
|
||
|
print("splitting the range-spectrum of secondary SLC")
|
||
|
split(secondarySlc, secondaryLowBandSlc, secondaryHighBandSlc, fs_secondary, bL, bH, fL, fH)
|
||
|
########################
|
||
|
|
||
|
createSlcImage(referenceLowBandSlc, width1)
|
||
|
createSlcImage(referenceHighBandSlc, width1)
|
||
|
createSlcImage(secondaryLowBandSlc, width2)
|
||
|
createSlcImage(secondaryHighBandSlc, width2)
|
||
|
|
||
|
########################
|
||
|
|
||
|
f0 = SPEED_OF_LIGHT/radarWavelength
|
||
|
fH = f0 + fH
|
||
|
fL = f0 + fL
|
||
|
wavelengthL = SPEED_OF_LIGHT/fL
|
||
|
wavelengthH = SPEED_OF_LIGHT/fH
|
||
|
|
||
|
self.insar.lowBandRadarWavelength = wavelengthL
|
||
|
self.insar.highBandRadarWavelength = wavelengthH
|
||
|
|
||
|
self.insar.lowBandSlc1 = referenceLowBandSlc
|
||
|
self.insar.lowBandSlc2 = secondaryLowBandSlc
|
||
|
|
||
|
self.insar.highBandSlc1 = referenceHighBandSlc
|
||
|
self.insar.highBandSlc2 = secondaryHighBandSlc
|
||
|
|
||
|
########################
|
||
|
|
||
|
|