266 lines
10 KiB
Python
266 lines
10 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
# United States Government Sponsorship acknowledged. This software is subject to
|
||
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
||
|
# (No [Export] License Required except when exporting to an embargoed country,
|
||
|
# end user, or in support of a prohibited end use). By downloading this software,
|
||
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
||
|
# The user has the responsibility to obtain export licenses, or other export
|
||
|
# authority as may be required before exporting this software to any 'EAR99'
|
||
|
# embargoed foreign country or citizen of those countries.
|
||
|
#
|
||
|
# Author: Piyush Agram
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
import datetime
|
||
|
|
||
|
try:
|
||
|
import h5py
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Python module h5py is required to process COSMO-SkyMed data"
|
||
|
)
|
||
|
|
||
|
import isceobj
|
||
|
from isceobj.Scene.Frame import Frame
|
||
|
from isceobj.Orbit.Orbit import StateVector
|
||
|
from isceobj.Planet.Planet import Planet
|
||
|
from isceobj.Planet.AstronomicalHandbook import Const
|
||
|
from isceobj.Sensor import cosar
|
||
|
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU
|
||
|
from isceobj.Sensor import tkfunc,createAuxFile
|
||
|
from iscesys.Component.Component import Component
|
||
|
|
||
|
|
||
|
class KOMPSAT5(Component):
|
||
|
"""
|
||
|
A class representing a Level1Product meta data.
|
||
|
Level1Product(hdf5=h5filename) will parse the hdf5
|
||
|
file and produce an object with attributes for metadata.
|
||
|
"""
|
||
|
|
||
|
logging_name = 'isce.Sensor.KOMPSAT5'
|
||
|
|
||
|
def __init__(self):
|
||
|
super(KOMPSAT5,self).__init__()
|
||
|
self.hdf5 = None
|
||
|
self.output = None
|
||
|
self.frame = Frame()
|
||
|
self.frame.configure()
|
||
|
# Some extra processing parameters unique to CSK SLC (currently)
|
||
|
self.dopplerCoeffs = []
|
||
|
self.rangeFirstTime = None
|
||
|
self.rangeLastTime = None
|
||
|
self.rangeRefTime = None
|
||
|
self.refUTC = None
|
||
|
|
||
|
self.descriptionOfVariables = {}
|
||
|
self.dictionaryOfVariables = {'HDF5': ['self.hdf5','str','mandatory'],
|
||
|
'OUTPUT': ['self.output','str','optional']}
|
||
|
|
||
|
self.lookMap = {'RIGHT': -1,
|
||
|
'LEFT': 1}
|
||
|
return
|
||
|
|
||
|
def __getstate__(self):
|
||
|
d = dict(self.__dict__)
|
||
|
del d['logger']
|
||
|
return d
|
||
|
|
||
|
def __setstate__(self,d):
|
||
|
self.__dict__.update(d)
|
||
|
self.logger = logging.getLogger('isce.Sensor.COSMO_SkyMed_SLC')
|
||
|
return
|
||
|
|
||
|
|
||
|
def getFrame(self):
|
||
|
return self.frame
|
||
|
|
||
|
def parse(self):
|
||
|
try:
|
||
|
fp = h5py.File(self.hdf5,'r')
|
||
|
except Exception as strerr:
|
||
|
self.logger.error("IOError: %s" % strerr)
|
||
|
return None
|
||
|
|
||
|
self.populateMetadata(fp)
|
||
|
fp.close()
|
||
|
|
||
|
def populateMetadata(self, file):
|
||
|
"""
|
||
|
Populate our Metadata objects
|
||
|
"""
|
||
|
|
||
|
self._populatePlatform(file)
|
||
|
self._populateInstrument(file)
|
||
|
self._populateFrame(file)
|
||
|
self._populateOrbit(file)
|
||
|
self._populateExtras(file)
|
||
|
|
||
|
def _populatePlatform(self, file):
|
||
|
platform = self.frame.getInstrument().getPlatform()
|
||
|
|
||
|
platform.setMission(file.attrs['Satellite ID'])
|
||
|
platform.setPointingDirection(self.lookMap[file.attrs['Look Side'].decode('utf-8')])
|
||
|
platform.setPlanet(Planet(pname="Earth"))
|
||
|
|
||
|
####This is an approximation for spotlight mode
|
||
|
####In spotlight mode, antenna length changes with azimuth position
|
||
|
platform.setAntennaLength(file.attrs['Antenna Length'])
|
||
|
try:
|
||
|
if file.attrs['Multi-Beam ID'].startswith('ES'):
|
||
|
platform.setAntennaLength(16000.0/file['S01/SBI'].attrs['Line Time Interval'])
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
def _populateInstrument(self, file):
|
||
|
instrument = self.frame.getInstrument()
|
||
|
|
||
|
# rangePixelSize = Const.c/(2*file['S01'].attrs['Sampling Rate'])
|
||
|
rangePixelSize = file['S01/SBI'].attrs['Column Spacing']
|
||
|
instrument.setRadarWavelength(file.attrs['Radar Wavelength'])
|
||
|
# instrument.setPulseRepetitionFrequency(file['S01'].attrs['PRF'])
|
||
|
instrument.setPulseRepetitionFrequency(1.0/file['S01/SBI'].attrs['Line Time Interval'])
|
||
|
instrument.setRangePixelSize(rangePixelSize)
|
||
|
instrument.setPulseLength(file['S01'].attrs['Range Chirp Length'])
|
||
|
instrument.setChirpSlope(file['S01'].attrs['Range Chirp Rate'])
|
||
|
# instrument.setRangeSamplingRate(file['S01'].attrs['Sampling Rate'])
|
||
|
instrument.setRangeSamplingRate(1.0/file['S01/SBI'].attrs['Column Time Interval'])
|
||
|
|
||
|
incangle = 0.5*(file['S01/SBI'].attrs['Far Incidence Angle'] +
|
||
|
file['S01/SBI'].attrs['Near Incidence Angle'])
|
||
|
instrument.setIncidenceAngle(incangle)
|
||
|
|
||
|
|
||
|
def _populateFrame(self, file):
|
||
|
|
||
|
rft = file['S01/SBI'].attrs['Zero Doppler Range First Time']
|
||
|
slantRange = rft*Const.c/2.0
|
||
|
self.frame.setStartingRange(slantRange)
|
||
|
|
||
|
referenceUTC = self._parseNanoSecondTimeStamp(file.attrs['Reference UTC'])
|
||
|
relStart = file['S01/SBI'].attrs['Zero Doppler Azimuth First Time']
|
||
|
relEnd = file['S01/SBI'].attrs['Zero Doppler Azimuth Last Time']
|
||
|
relMid = 0.5*(relStart + relEnd)
|
||
|
|
||
|
sensingStart = self._combineDateTime(referenceUTC, relStart)
|
||
|
sensingStop = self._combineDateTime(referenceUTC, relEnd)
|
||
|
sensingMid = self._combineDateTime(referenceUTC, relMid)
|
||
|
|
||
|
|
||
|
self.frame.setPassDirection(file.attrs['Orbit Direction'])
|
||
|
self.frame.setOrbitNumber(file.attrs['Orbit Number'])
|
||
|
self.frame.setProcessingFacility(file.attrs['Processing Centre'])
|
||
|
self.frame.setProcessingSoftwareVersion(file.attrs['L0 Software Version'])
|
||
|
self.frame.setPolarization(file['S01'].attrs['Polarisation'])
|
||
|
self.frame.setNumberOfLines(file['S01/SBI'].shape[0])
|
||
|
self.frame.setNumberOfSamples(file['S01/SBI'].shape[1])
|
||
|
self.frame.setSensingStart(sensingStart)
|
||
|
self.frame.setSensingMid(sensingMid)
|
||
|
self.frame.setSensingStop(sensingStop)
|
||
|
|
||
|
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
|
||
|
farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize
|
||
|
self.frame.setFarRange(farRange)
|
||
|
|
||
|
def _populateOrbit(self,file):
|
||
|
orbit = self.frame.getOrbit()
|
||
|
|
||
|
orbit.setReferenceFrame('ECR')
|
||
|
orbit.setOrbitSource('Header')
|
||
|
t0 = datetime.datetime.strptime(file.attrs['Reference UTC'].decode('utf-8'),'%Y-%m-%d %H:%M:%S.%f000')
|
||
|
t = file.attrs['State Vectors Times']
|
||
|
position = file.attrs['ECEF Satellite Position']
|
||
|
velocity = file.attrs['ECEF Satellite Velocity']
|
||
|
|
||
|
for i in range(len(position)):
|
||
|
vec = StateVector()
|
||
|
dt = t0 + datetime.timedelta(seconds=t[i])
|
||
|
vec.setTime(dt)
|
||
|
vec.setPosition([position[i,0],position[i,1],position[i,2]])
|
||
|
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
|
||
|
orbit.addStateVector(vec)
|
||
|
|
||
|
|
||
|
def _populateExtras(self, file):
|
||
|
"""
|
||
|
Populate some of the extra fields unique to processing TSX data.
|
||
|
In the future, other sensors may need this information as well,
|
||
|
and a re-organization may be necessary.
|
||
|
"""
|
||
|
from isceobj.Doppler.Doppler import Doppler
|
||
|
|
||
|
scale = file['S01'].attrs['PRF'] * file['S01/SBI'].attrs['Line Time Interval']
|
||
|
self.dopplerCoeffs = file.attrs['Centroid vs Range Time Polynomial']*scale
|
||
|
self.rangeRefTime = file.attrs['Range Polynomial Reference Time']
|
||
|
self.rangeFirstTime = file['S01/SBI'].attrs['Zero Doppler Range First Time']
|
||
|
self.rangeLastTime = file['S01/SBI'].attrs['Zero Doppler Range Last Time']
|
||
|
|
||
|
def extractImage(self):
|
||
|
import os
|
||
|
from ctypes import cdll, c_char_p
|
||
|
extract_csk = cdll.LoadLibrary(os.path.dirname(__file__)+'/csk.so')
|
||
|
inFile_c = c_char_p(bytes(self.hdf5, 'utf-8'))
|
||
|
outFile_c = c_char_p(bytes(self.output, 'utf-8'))
|
||
|
|
||
|
extract_csk.extract_csk_slc(inFile_c, outFile_c)
|
||
|
|
||
|
self.parse()
|
||
|
slcImage = isceobj.createSlcImage()
|
||
|
slcImage.setFilename(self.output)
|
||
|
slcImage.setXmin(0)
|
||
|
slcImage.setXmax(self.frame.getNumberOfSamples())
|
||
|
slcImage.setWidth(self.frame.getNumberOfSamples())
|
||
|
slcImage.setAccessMode('r')
|
||
|
self.frame.setImage(slcImage)
|
||
|
|
||
|
|
||
|
def _parseNanoSecondTimeStamp(self,timestamp):
|
||
|
"""
|
||
|
Parse a date-time string with nanosecond precision and return a datetime object
|
||
|
"""
|
||
|
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
|
||
|
microsec = float(nanoSeconds)*1e-3
|
||
|
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
|
||
|
dt = dt + datetime.timedelta(microseconds=microsec)
|
||
|
return dt
|
||
|
|
||
|
def _combineDateTime(self,dobj, secsstr):
|
||
|
'''Takes the date from dobj and time from secs to spit out a date time object.
|
||
|
'''
|
||
|
sec = float(secsstr)
|
||
|
dt = datetime.timedelta(seconds = sec)
|
||
|
return dobj + dt
|
||
|
|
||
|
|
||
|
def extractDoppler(self):
|
||
|
"""
|
||
|
Return the doppler centroid as defined in the HDF5 file.
|
||
|
"""
|
||
|
quadratic = {}
|
||
|
midtime = (self.rangeLastTime + self.rangeFirstTime)*0.5 - self.rangeRefTime
|
||
|
fd_mid = self.dopplerCoeffs[0] + self.dopplerCoeffs[1]*midtime + self.dopplerCoeffs[2]*midtime*midtime
|
||
|
|
||
|
quadratic['a'] = fd_mid/self.frame.getInstrument().getPulseRepetitionFrequency()
|
||
|
quadratic['b'] = 0.
|
||
|
quadratic['c'] = 0.
|
||
|
return quadratic
|