ISCE_INSAR/components/isceobj/StripmapProc/runRubbersheetRange.py

290 lines
8.7 KiB
Python
Raw Normal View History

#
# Author: Heresh Fattahi
# Copyright 2017
#
# Modified by V. Brancato (10.12.2019)
# Including offset filtering with no SNR masking
#
import isce
import isceobj
from osgeo import gdal
import numpy as np
import os
def mask_filterNoSNR(denseOffsetFile,filterSize,outName):
# Masking the offsets with a data-based approach
from scipy import ndimage
# Open the offsets
ds = gdal.Open(denseOffsetFile+'.vrt',gdal.GA_ReadOnly)
off_az = ds.GetRasterBand(1).ReadAsArray()
off_rg = ds.GetRasterBand(2).ReadAsArray()
ds = None
# Remove values reported as missing data (no value data from ampcor)
off_rg[np.where(off_rg < -9999)]=0
off_az[np.where(off_az < -9999)]=0
# Store the offsets in a complex variable
off = off_rg + 1j*off_az
# Mask the offset based on MAD
mask = off_masking(off,filterSize,thre=3)
xoff_masked = np.ma.array(off.real,mask=mask)
yoff_masked = np.ma.array(off.imag,mask=mask)
# Delete not used variables
mask = None
off = None
# Remove residual noisy spots with a median filter on the range offmap
xoff_masked.mask = xoff_masked.mask | \
(ndimage.median_filter(xoff_masked.filled(fill_value=0),3) == 0) | \
(ndimage.median_filter(yoff_masked.filled(fill_value=0),3) == 0)
# Fill the range offset map iteratively with smoothed values
data = xoff_masked.data
data[xoff_masked.mask]=np.nan
off_rg_filled = fill_with_smoothed(data,filterSize)
# Apply the median filter on the offset
off_rg_filled = ndimage.median_filter(off_rg_filled,filterSize)
# Save the filtered offsets
length, width = off_rg_filled.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
off_rg_filled.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return
def off_masking(off,filterSize,thre=2):
from scipy import ndimage
vram = ndimage.median_filter(off.real, filterSize)
vazm = ndimage.median_filter(off.imag, filterSize)
mask = (np.abs(off.real-vram) > thre) | (np.abs(off.imag-vazm) > thre) | (off.imag == 0) | (off.real == 0)
return mask
def fill(data, invalid=None):
"""
Replace the value of invalid 'data' cells (indicated by 'invalid')
by the value of the nearest valid data cell
Input:
data: numpy array of any dimension
invalid: a binary array of same shape as 'data'.
data value are replaced where invalid is True
If None (default), use: invalid = np.isnan(data)
Output:
Return a filled array.
"""
from scipy import ndimage
if invalid is None: invalid = np.isnan(data)
ind = ndimage.distance_transform_edt(invalid,
return_distances=False,
return_indices=True)
return data[tuple(ind)]
def fill_with_smoothed(off,filterSize):
from astropy.convolution import convolve
off_2filt=np.copy(off)
kernel = np.ones((filterSize,filterSize),np.float32)/(filterSize*filterSize)
loop = 0
cnt2=1
while (cnt2 !=0 & loop<100):
loop += 1
idx2= np.isnan(off_2filt)
cnt2 = np.sum(np.count_nonzero(np.isnan(off_2filt)))
print(cnt2)
if cnt2 != 0:
off_filt= convolve(off_2filt,kernel,boundary='extend',nan_treatment='interpolate')
off_2filt[idx2]=off_filt[idx2]
idx3 = np.where(off_filt == 0)
off_2filt[idx3]=np.nan
off_filt=None
return off_2filt
def mask_filter(denseOffsetFile, snrFile, band, snrThreshold, filterSize, outName):
#masking and Filtering
from scipy import ndimage
##Read in the offset file
ds = gdal.Open(denseOffsetFile + '.vrt', gdal.GA_ReadOnly)
Offset = ds.GetRasterBand(band).ReadAsArray()
ds = None
##Read in the SNR file
ds = gdal.Open(snrFile + '.vrt', gdal.GA_ReadOnly)
snr = ds.GetRasterBand(1).ReadAsArray()
ds = None
# Masking the dense offsets based on SNR
print ('masking the dense offsets with SNR threshold: ', snrThreshold)
Offset[snr<snrThreshold]=np.nan
# Fill the masked region using valid neighboring pixels
Offset = fill(Offset)
############
# Median filtering the masked offsets
print ('Filtering with median filter with size : ', filterSize)
Offset = ndimage.median_filter(Offset, size=filterSize)
length, width = Offset.shape
# writing the masked and filtered offsets to a file
print ('writing masked and filtered offsets to: ', outName)
##Write array to offsetfile
Offset.tofile(outName)
# write the xml file
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'FLOAT'
img.scheme = 'BIP'
img.renderHdr()
return None
def resampleOffset(maskedFiltOffset, geometryOffset, outName):
'''
Oversample offset and add.
'''
from imageMath import IML
import logging
resampledOffset = maskedFiltOffset + ".resampled"
inimg = isceobj.createImage()
inimg.load(geometryOffset + '.xml')
length = inimg.getLength()
width = inimg.getWidth()
###Currently making the assumption that top left of dense offsets and interfeorgrams are the same.
###This is not true for now. We need to update DenseOffsets to have the ability to have same top left
###As the input images. Once that is implemente, the math here should all be consistent.
###However, this is not too far off since the skip for doing dense offsets is generally large.
###The offset is not too large to worry about right now. If the skip is decreased, this could be an issue.
print('oversampling the filtered and masked offsets to the width and length:', width, ' ', length )
cmd = 'gdal_translate -of ENVI -ot Float64 -outsize ' + str(width) + ' ' + str(length) + ' ' + maskedFiltOffset + '.vrt ' + resampledOffset
print(cmd)
os.system(cmd)
img = isceobj.createImage()
img.setFilename(resampledOffset)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
###Adding the geometry offset and oversampled offset
geomoff = IML.mmapFromISCE(geometryOffset, logging)
osoff = IML.mmapFromISCE(resampledOffset, logging)
fid = open(outName, 'w')
for ll in range(length):
val = geomoff.bands[0][ll,:] + osoff.bands[0][ll,:]
val.tofile(fid)
fid.close()
img = isceobj.createImage()
img.setFilename(outName)
img.setWidth(width)
img.setLength(length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'DOUBLE'
img.scheme = 'BIP'
img.renderHdr()
return None
def runRubbersheetRange(self):
from scipy import ndimage
if not self.doRubbersheetingRange:
print('Rubber sheeting in azimuth not requested ... skipping')
return
# denseOffset file name computeed from cross-correlation
denseOffsetFile = os.path.join(self.insar.denseOffsetsDirname , self.insar.denseOffsetFilename)
snrFile = denseOffsetFile + "_snr.bil"
denseOffsetFile = denseOffsetFile + ".bil"
# we want the range offsets only which are the first band
band = [2]
snrThreshold = self.rubberSheetSNRThreshold
filterSize = self.rubberSheetFilterSize
filtRgOffsetFile = os.path.join(self.insar.denseOffsetsDirname, self._insar.filtRangeOffsetFilename)
# masking and median filtering the dense offsets
if not self.doRubbersheetingRange:
print('Rubber sheeting in range is off, applying SNR-masking for the offsets maps')
mask_filter(denseOffsetFile, snrFile, band[0], snrThreshold, filterSize, filtRgOffsetFile)
else:
print('Rubber sheeting in range is on, applying a data-based offsets-masking')
mask_filterNoSNR(denseOffsetFile,filterSize,filtRgOffsetFile)
# range offsets computed from geometry
offsetsDir = self.insar.offsetsDirname
geometryRangeOffset = os.path.join(offsetsDir, self.insar.rangeOffsetFilename)
RgsheetOffset = os.path.join(offsetsDir, self.insar.rangeRubbersheetFilename)
# oversampling the filtRgOffsetFile to the same size of geometryRangeOffset
# and then update the geometryRangeOffset by adding the oversampled
# filtRgOffsetFile to it.
resampleOffset(filtRgOffsetFile, geometryRangeOffset, RgsheetOffset)
return None