326 lines
12 KiB
Python
326 lines
12 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
# United States Government Sponsorship acknowledged. This software is subject to
|
||
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
||
|
# (No [Export] License Required except when exporting to an embargoed country,
|
||
|
# end user, or in support of a prohibited end use). By downloading this software,
|
||
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
||
|
# The user has the responsibility to obtain export licenses, or other export
|
||
|
# authority as may be required before exporting this software to any 'EAR99'
|
||
|
# embargoed foreign country or citizen of those countries.
|
||
|
#
|
||
|
# Author: Heresh Fattahi
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
import datetime
|
||
|
import logging
|
||
|
try:
|
||
|
import h5py
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Python module h5py is required to process COSMO-SkyMed data"
|
||
|
)
|
||
|
|
||
|
import isceobj
|
||
|
from isceobj.Scene.Frame import Frame
|
||
|
from isceobj.Orbit.Orbit import StateVector
|
||
|
from isceobj.Planet.Planet import Planet
|
||
|
from isceobj.Planet.AstronomicalHandbook import Const
|
||
|
from isceobj.Sensor import cosar
|
||
|
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU
|
||
|
from isceobj.Sensor import tkfunc,createAuxFile
|
||
|
from iscesys.Component.Component import Component
|
||
|
from isceobj.Constants import SPEED_OF_LIGHT
|
||
|
|
||
|
HDF5 = Component.Parameter(
|
||
|
'hdf5',
|
||
|
public_name='HDF5',
|
||
|
default=None,
|
||
|
type=str,
|
||
|
mandatory=True,
|
||
|
intent='input',
|
||
|
doc='UAVSAR slc input file in HDF5 format'
|
||
|
)
|
||
|
|
||
|
FREQUENCY = Component.Parameter(
|
||
|
'frequency',
|
||
|
public_name='FREQUENCY',
|
||
|
default='frequencyA',
|
||
|
type=str,
|
||
|
mandatory=True,
|
||
|
intent='input',
|
||
|
doc='frequency band of the UAVSAR slc file to be processed (frequencyA or frequencyB)'
|
||
|
)
|
||
|
|
||
|
POLARIZATION = Component.Parameter(
|
||
|
'polarization',
|
||
|
public_name='POLARIZATION',
|
||
|
default='HH',
|
||
|
type=str,
|
||
|
mandatory=True,
|
||
|
intent='input',
|
||
|
doc='polarization channel of the UAVSAR slc file to be processed'
|
||
|
)
|
||
|
|
||
|
from .Sensor import Sensor
|
||
|
class UAVSAR_HDF5_SLC(Sensor):
|
||
|
"""
|
||
|
A class representing a Level1Product meta data.
|
||
|
Level1Product(hdf5=h5filename) will parse the hdf5
|
||
|
file and produce an object with attributes for metadata.
|
||
|
"""
|
||
|
parameter_list = (HDF5,
|
||
|
FREQUENCY,
|
||
|
POLARIZATION) + Sensor.parameter_list
|
||
|
|
||
|
logging_name = 'isce.Sensor.UAVSAR_HDF5_SLC'
|
||
|
family = 'uavsar_hdf5_slc'
|
||
|
|
||
|
def __init__(self,family='',name=''):# , frequency='frequencyA', polarization='HH'):
|
||
|
super(UAVSAR_HDF5_SLC,self).__init__(family if family else self.__class__.family, name=name)
|
||
|
self.frame = Frame()
|
||
|
self.frame.configure()
|
||
|
# Some extra processing parameters unique to UAVSAR HDF5 SLC (currently)
|
||
|
self.dopplerRangeTime = []
|
||
|
self.dopplerAzimuthTime = []
|
||
|
self.azimuthRefTime = None
|
||
|
self.rangeRefTime = None
|
||
|
self.rangeFirstTime = None
|
||
|
self.rangeLastTime = None
|
||
|
#self.frequency = frequency
|
||
|
#self.polarization = polarization
|
||
|
|
||
|
self.lookMap = {'right': -1,
|
||
|
'left': 1}
|
||
|
return
|
||
|
|
||
|
def __getstate__(self):
|
||
|
d = dict(self.__dict__)
|
||
|
del d['logger']
|
||
|
return d
|
||
|
|
||
|
def __setstate__(self,d):
|
||
|
self.__dict__.update(d)
|
||
|
self.logger = logging.getLogger('isce.Sensor.UAVSAR_HDF5_SLC')
|
||
|
return
|
||
|
|
||
|
|
||
|
def getFrame(self):
|
||
|
return self.frame
|
||
|
|
||
|
def parse(self):
|
||
|
try:
|
||
|
fp = h5py.File(self.hdf5,'r')
|
||
|
except Exception as strerr:
|
||
|
self.logger.error("IOError: %s" % strerr)
|
||
|
return None
|
||
|
|
||
|
self.populateMetadata(fp)
|
||
|
fp.close()
|
||
|
|
||
|
def populateMetadata(self, file):
|
||
|
"""
|
||
|
Populate our Metadata objects
|
||
|
"""
|
||
|
|
||
|
self._populatePlatform(file)
|
||
|
self._populateInstrument(file)
|
||
|
self._populateFrame(file)
|
||
|
self._populateOrbit(file)
|
||
|
|
||
|
|
||
|
def _populatePlatform(self, file):
|
||
|
platform = self.frame.getInstrument().getPlatform()
|
||
|
|
||
|
platform.setMission(file['/science/LSAR/identification'].get('missionId')[()].decode('utf-8'))
|
||
|
platform.setPointingDirection(self.lookMap[file['/science/LSAR/identification'].get('lookDirection')[()].decode('utf-8')])
|
||
|
platform.setPlanet(Planet(pname="Earth"))
|
||
|
|
||
|
# We are not using this value anywhere. Let's fix it for now.
|
||
|
platform.setAntennaLength(12.0)
|
||
|
|
||
|
def _populateInstrument(self, file):
|
||
|
instrument = self.frame.getInstrument()
|
||
|
|
||
|
rangePixelSize = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRangeSpacing'][()]
|
||
|
wvl = SPEED_OF_LIGHT/file['/science/LSAR/SLC/swaths/' + self.frequency + '/processedCenterFrequency'][()]
|
||
|
instrument.setRadarWavelength(wvl)
|
||
|
instrument.setPulseRepetitionFrequency(1.0/file['/science/LSAR/SLC/swaths/zeroDopplerTimeSpacing'][()])
|
||
|
rangePixelSize = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRangeSpacing'][()]
|
||
|
instrument.setRangePixelSize(rangePixelSize)
|
||
|
|
||
|
# Chrip slope and length only are used in the split spectrum workflow to compute the bandwidth.
|
||
|
# Therefore fixing it to 1.0 won't breack anything
|
||
|
Chirp_slope = 1.0
|
||
|
rangeBandwidth = file['/science/LSAR/SLC/swaths/' + self.frequency + '/processedRangeBandwidth'][()]
|
||
|
Chirp_length = rangeBandwidth/Chirp_slope
|
||
|
instrument.setPulseLength(Chirp_length)
|
||
|
instrument.setChirpSlope(Chirp_slope)
|
||
|
rangeSamplingFrequency = SPEED_OF_LIGHT/2./rangePixelSize
|
||
|
instrument.setRangeSamplingRate(rangeSamplingFrequency)
|
||
|
|
||
|
incangle = 0.0
|
||
|
instrument.setIncidenceAngle(incangle)
|
||
|
|
||
|
|
||
|
def _populateFrame(self, file):
|
||
|
|
||
|
slantRange = file['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRange'][0]
|
||
|
self.frame.setStartingRange(slantRange)
|
||
|
|
||
|
referenceUTC = file['/science/LSAR/SLC/swaths/zeroDopplerTime'].attrs['units'].decode('utf-8')
|
||
|
referenceUTC = referenceUTC.replace('seconds since ','')
|
||
|
referenceUTC = datetime.datetime.strptime(referenceUTC,'%Y-%m-%d %H:%M:%S')
|
||
|
|
||
|
relStart = file['/science/LSAR/SLC/swaths/zeroDopplerTime'][0]
|
||
|
relEnd = file['/science/LSAR/SLC/swaths/zeroDopplerTime'][-1]
|
||
|
relMid = 0.5*(relStart + relEnd)
|
||
|
|
||
|
sensingStart = self._combineDateTime(referenceUTC, relStart)
|
||
|
sensingStop = self._combineDateTime(referenceUTC, relEnd)
|
||
|
sensingMid = self._combineDateTime(referenceUTC, relMid)
|
||
|
|
||
|
|
||
|
self.frame.setPassDirection(file['/science/LSAR/identification'].get('orbitPassDirection')[()].decode('utf-8'))
|
||
|
self.frame.setOrbitNumber(file['/science/LSAR/identification'].get('trackNumber')[()])
|
||
|
self.frame.setProcessingFacility('JPL')
|
||
|
self.frame.setProcessingSoftwareVersion(file['/science/LSAR/SLC/metadata/processingInformation/algorithms'].get('ISCEVersion')[()].decode('utf-8'))
|
||
|
self.frame.setPolarization(self.polarization)
|
||
|
self.frame.setNumberOfLines(file['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization].shape[0])
|
||
|
self.frame.setNumberOfSamples(file['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization].shape[1])
|
||
|
self.frame.setSensingStart(sensingStart)
|
||
|
self.frame.setSensingMid(sensingMid)
|
||
|
self.frame.setSensingStop(sensingStop)
|
||
|
|
||
|
rangePixelSize = self.frame.instrument.rangePixelSize
|
||
|
farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize
|
||
|
self.frame.setFarRange(farRange)
|
||
|
|
||
|
def _populateOrbit(self,file):
|
||
|
orbit = self.frame.getOrbit()
|
||
|
|
||
|
orbit.setReferenceFrame('ECR')
|
||
|
orbit.setOrbitSource('Header')
|
||
|
|
||
|
referenceUTC = file['/science/LSAR/SLC/swaths/zeroDopplerTime'].attrs['units'].decode('utf-8')
|
||
|
referenceUTC = referenceUTC.replace('seconds since ','')
|
||
|
t0 = datetime.datetime.strptime(referenceUTC,'%Y-%m-%d %H:%M:%S')
|
||
|
t = file['/science/LSAR/SLC/metadata/orbit/time']
|
||
|
position = file['/science/LSAR/SLC/metadata/orbit/position']
|
||
|
velocity = file['/science/LSAR/SLC/metadata/orbit/velocity']
|
||
|
|
||
|
for i in range(len(position)):
|
||
|
vec = StateVector()
|
||
|
dt = t0 + datetime.timedelta(seconds=t[i])
|
||
|
vec.setTime(dt)
|
||
|
vec.setPosition([position[i,0],position[i,1],position[i,2]])
|
||
|
vec.setVelocity([velocity[i,0],velocity[i,1],velocity[i,2]])
|
||
|
orbit.addStateVector(vec)
|
||
|
|
||
|
|
||
|
def extractImage(self):
|
||
|
|
||
|
import numpy as np
|
||
|
import h5py
|
||
|
|
||
|
self.parse()
|
||
|
|
||
|
fid = h5py.File(self.hdf5, 'r')
|
||
|
ds = fid['/science/LSAR/SLC/swaths/' + self.frequency + '/' + self.polarization]
|
||
|
nLines = ds.shape[0]
|
||
|
|
||
|
with open(self.output, 'wb') as fout:
|
||
|
for ii in range(nLines):
|
||
|
ds[ii,:].astype(np.complex64).tofile(fout)
|
||
|
|
||
|
fid.close()
|
||
|
|
||
|
slcImage = isceobj.createSlcImage()
|
||
|
slcImage.setFilename(self.output)
|
||
|
slcImage.setXmin(0)
|
||
|
slcImage.setXmax(self.frame.getNumberOfSamples())
|
||
|
slcImage.setWidth(self.frame.getNumberOfSamples())
|
||
|
slcImage.setAccessMode('r')
|
||
|
slcImage.renderHdr()
|
||
|
self.frame.setImage(slcImage)
|
||
|
|
||
|
|
||
|
def _parseNanoSecondTimeStamp(self,timestamp):
|
||
|
"""
|
||
|
Parse a date-time string with nanosecond precision and return a datetime object
|
||
|
"""
|
||
|
dateTime,nanoSeconds = timestamp.decode('utf-8').split('.')
|
||
|
microsec = float(nanoSeconds)*1e-3
|
||
|
dt = datetime.datetime.strptime(dateTime,'%Y-%m-%d %H:%M:%S')
|
||
|
dt = dt + datetime.timedelta(microseconds=microsec)
|
||
|
return dt
|
||
|
|
||
|
def _combineDateTime(self,dobj, secsstr):
|
||
|
'''Takes the date from dobj and time from secs to spit out a date time object.
|
||
|
'''
|
||
|
sec = float(secsstr)
|
||
|
dt = datetime.timedelta(seconds = sec)
|
||
|
return dobj + dt
|
||
|
|
||
|
def extractDoppler(self):
|
||
|
"""
|
||
|
Return the doppler centroid as defined in the HDF5 file.
|
||
|
"""
|
||
|
|
||
|
import h5py
|
||
|
from scipy.interpolate import UnivariateSpline
|
||
|
import numpy as np
|
||
|
|
||
|
h5 = h5py.File(self.hdf5,'r')
|
||
|
|
||
|
# extract the 2D LUT of Doppler and choose only one range line as the data duplicates for other range lines
|
||
|
dop = h5['/science/LSAR/SLC/metadata/processingInformation/parameters/' + self.frequency + '/dopplerCentroid'][0,:]
|
||
|
rng = h5['/science/LSAR/SLC/metadata/processingInformation/parameters/slantRange']
|
||
|
|
||
|
# extract the slant range of the image grid
|
||
|
imgRng = h5['/science/LSAR/SLC/swaths/' + self.frequency + '/slantRange']
|
||
|
|
||
|
# use only part of the slant range that closely covers image ranges and ignore the rest
|
||
|
ind0 = np.argmin(np.abs(rng-imgRng[0])) - 1
|
||
|
ind0 = np.max([0,ind0])
|
||
|
ind1 = np.argmin(np.abs(rng-imgRng[-1])) + 1
|
||
|
ind1 = np.min([ind1, rng.shape[0]])
|
||
|
|
||
|
dop = dop[ind0:ind1]
|
||
|
rng = rng[ind0:ind1]
|
||
|
|
||
|
f = UnivariateSpline(rng, dop)
|
||
|
imgDop = f(imgRng)
|
||
|
|
||
|
dr = imgRng[1]-imgRng[0]
|
||
|
pix = (imgRng - imgRng[0])/dr
|
||
|
fit = np.polyfit(pix, imgDop, 41)
|
||
|
|
||
|
self.frame._dopplerVsPixel = list(fit[::-1])
|
||
|
|
||
|
####insarApp style (doesn't get used for stripmapApp). A fixed Doppler at the middle of the scene
|
||
|
quadratic = {}
|
||
|
quadratic['a'] = imgDop[int(imgDop.shape[0]/2)]/self.frame.getInstrument().getPulseRepetitionFrequency()
|
||
|
quadratic['b'] = 0.
|
||
|
quadratic['c'] = 0.
|
||
|
|
||
|
return quadratic
|