286 lines
10 KiB
Python
286 lines
10 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
# United States Government Sponsorship acknowledged. This software is subject to
|
||
|
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
|
||
|
# (No [Export] License Required except when exporting to an embargoed country,
|
||
|
# end user, or in support of a prohibited end use). By downloading this software,
|
||
|
# the user agrees to comply with all applicable U.S. export laws and regulations.
|
||
|
# The user has the responsibility to obtain export licenses, or other export
|
||
|
# authority as may be required before exporting this software to any 'EAR99'
|
||
|
# embargoed foreign country or citizen of those countries.
|
||
|
#
|
||
|
# Author: Piyush Agram
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
import datetime
|
||
|
import logging
|
||
|
try:
|
||
|
import h5py
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Python module h5py is required to process ICEYE data"
|
||
|
)
|
||
|
|
||
|
import isceobj
|
||
|
from isceobj.Scene.Frame import Frame
|
||
|
from isceobj.Orbit.Orbit import StateVector
|
||
|
from isceobj.Planet.Planet import Planet
|
||
|
from isceobj.Planet.AstronomicalHandbook import Const
|
||
|
from isceobj.Sensor import cosar
|
||
|
from iscesys.DateTimeUtil.DateTimeUtil import DateTimeUtil as DTU
|
||
|
from isceobj.Sensor import tkfunc,createAuxFile
|
||
|
from iscesys.Component.Component import Component
|
||
|
|
||
|
HDF5 = Component.Parameter(
|
||
|
'hdf5',
|
||
|
public_name='HDF5',
|
||
|
default=None,
|
||
|
type=str,
|
||
|
mandatory=True,
|
||
|
intent='input',
|
||
|
doc='ICEYE slc hdf5 input file'
|
||
|
)
|
||
|
|
||
|
APPLY_SLANT_RANGE_PHASE = Component.Parameter(
|
||
|
'applySlantRangePhase',
|
||
|
public_name='APPLY_SLANT_RANGE_PHASE',
|
||
|
default=False,
|
||
|
type=bool,
|
||
|
mandatory=True,
|
||
|
intent='input',
|
||
|
doc='Recenter spectra by applying range spectra shift'
|
||
|
)
|
||
|
|
||
|
from .Sensor import Sensor
|
||
|
class ICEYE_SLC(Sensor):
|
||
|
"""
|
||
|
A class representing a Level1Product meta data.
|
||
|
Level1Product(hdf5=h5filename) will parse the hdf5
|
||
|
file and produce an object with attributes for metadata.
|
||
|
"""
|
||
|
parameter_list = (HDF5, APPLY_SLANT_RANGE_PHASE) + Sensor.parameter_list
|
||
|
logging_name = 'isce.Sensor.ICEYE_SLC'
|
||
|
family = 'iceye_slc'
|
||
|
|
||
|
def __init__(self,family='',name=''):
|
||
|
super(ICEYE_SLC,self).__init__(family if family else self.__class__.family, name=name)
|
||
|
self.frame = Frame()
|
||
|
self.frame.configure()
|
||
|
# Some extra processing parameters unique to CSK SLC (currently)
|
||
|
self.dopplerRangeTime = []
|
||
|
self.dopplerAzimuthTime = []
|
||
|
self.azimuthRefTime = None
|
||
|
self.rangeRefTime = None
|
||
|
self.rangeFirstTime = None
|
||
|
self.rangeLastTime = None
|
||
|
|
||
|
|
||
|
self.lookMap = {'RIGHT': -1,
|
||
|
'LEFT': 1}
|
||
|
return
|
||
|
|
||
|
def __getstate__(self):
|
||
|
d = dict(self.__dict__)
|
||
|
del d['logger']
|
||
|
return d
|
||
|
|
||
|
def __setstate__(self,d):
|
||
|
self.__dict__.update(d)
|
||
|
self.logger = logging.getLogger('isce.Sensor.ICEYE_SLC')
|
||
|
return
|
||
|
|
||
|
|
||
|
def getFrame(self):
|
||
|
return self.frame
|
||
|
|
||
|
def parse(self):
|
||
|
try:
|
||
|
fp = h5py.File(self.hdf5,'r')
|
||
|
except Exception as strerr:
|
||
|
self.logger.error("IOError: %s" % strerr)
|
||
|
return None
|
||
|
|
||
|
self.populateMetadata(fp)
|
||
|
fp.close()
|
||
|
|
||
|
def populateMetadata(self, file):
|
||
|
"""
|
||
|
Populate our Metadata objects
|
||
|
"""
|
||
|
|
||
|
self._populatePlatform(file)
|
||
|
self._populateInstrument(file)
|
||
|
self._populateFrame(file)
|
||
|
self._populateOrbit(file)
|
||
|
self._populateExtras(file)
|
||
|
|
||
|
|
||
|
def _populatePlatform(self, file):
|
||
|
platform = self.frame.getInstrument().getPlatform()
|
||
|
|
||
|
platform.setMission(file['satellite_name'][()])
|
||
|
platform.setPointingDirection(self.lookMap[file['look_side'][()].upper()])
|
||
|
platform.setPlanet(Planet(pname="Earth"))
|
||
|
|
||
|
####This is an approximation for spotlight mode
|
||
|
####In spotlight mode, antenna length changes with azimuth position
|
||
|
platform.setAntennaLength(2 * file['azimuth_ground_spacing'][()])
|
||
|
|
||
|
assert( file['range_looks'][()] == 1)
|
||
|
assert( file['azimuth_looks'][()] == 1)
|
||
|
|
||
|
def _populateInstrument(self, file):
|
||
|
instrument = self.frame.getInstrument()
|
||
|
|
||
|
rangePixelSize = file['slant_range_spacing'][()]
|
||
|
instrument.setRadarWavelength(Const.c / file['carrier_frequency'][()])
|
||
|
instrument.setPulseRepetitionFrequency(file['processing_prf'][()])
|
||
|
instrument.setRangePixelSize(rangePixelSize)
|
||
|
instrument.setPulseLength(file['chirp_duration'][()])
|
||
|
instrument.setChirpSlope(file['chirp_bandwidth'][()]/ file['chirp_duration'][()])
|
||
|
instrument.setRangeSamplingRate(file['range_sampling_rate'][()])
|
||
|
|
||
|
incangle = file['local_incidence_angle']
|
||
|
instrument.setIncidenceAngle(incangle[incangle.size//2])
|
||
|
|
||
|
|
||
|
def _populateFrame(self, file):
|
||
|
|
||
|
rft = file['first_pixel_time'][()]
|
||
|
slantRange = rft*Const.c/2.0
|
||
|
self.frame.setStartingRange(slantRange)
|
||
|
|
||
|
|
||
|
sensingStart = datetime.datetime.strptime(file['zerodoppler_start_utc'][()].decode('utf-8'),'%Y-%m-%dT%H:%M:%S.%f')
|
||
|
sensingStop = datetime.datetime.strptime(file['zerodoppler_end_utc'][()].decode('utf-8'),'%Y-%m-%dT%H:%M:%S.%f')
|
||
|
sensingMid = sensingStart + 0.5 * (sensingStop - sensingStart)
|
||
|
|
||
|
self.frame.setPassDirection(file['orbit_direction'][()])
|
||
|
self.frame.setOrbitNumber(file['orbit_absolute_number'][()])
|
||
|
self.frame.setProcessingFacility('ICEYE')
|
||
|
self.frame.setProcessingSoftwareVersion(str(file['processor_version'][()]))
|
||
|
self.frame.setPolarization(file['polarization'][()])
|
||
|
self.frame.setNumberOfLines(file['number_of_azimuth_samples'][()])
|
||
|
self.frame.setNumberOfSamples(file['number_of_range_samples'][()])
|
||
|
self.frame.setSensingStart(sensingStart)
|
||
|
self.frame.setSensingMid(sensingMid)
|
||
|
self.frame.setSensingStop(sensingStop)
|
||
|
|
||
|
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
|
||
|
farRange = slantRange + (self.frame.getNumberOfSamples()-1)*rangePixelSize
|
||
|
self.frame.setFarRange(farRange)
|
||
|
|
||
|
def _populateOrbit(self,file):
|
||
|
import numpy as np
|
||
|
orbit = self.frame.getOrbit()
|
||
|
|
||
|
orbit.setReferenceFrame('ECR')
|
||
|
orbit.setOrbitSource('Header')
|
||
|
t = file['state_vector_time_utc'][:]
|
||
|
position = np.zeros((t.size,3))
|
||
|
position[:,0] = file['posX'][:]
|
||
|
position[:,1] = file['posY'][:]
|
||
|
position[:,2] = file['posZ'][:]
|
||
|
|
||
|
velocity = np.zeros((t.size,3))
|
||
|
velocity[:,0] = file['velX'][:]
|
||
|
velocity[:,1] = file['velY'][:]
|
||
|
velocity[:,2] = file['velZ'][:]
|
||
|
|
||
|
for ii in range(t.size):
|
||
|
vec = StateVector()
|
||
|
vec.setTime(datetime.datetime.strptime(t[ii][0].decode('utf-8'), '%Y-%m-%dT%H:%M:%S.%f'))
|
||
|
vec.setPosition([position[ii,0],position[ii,1],position[ii,2]])
|
||
|
vec.setVelocity([velocity[ii,0],velocity[ii,1],velocity[ii,2]])
|
||
|
orbit.addStateVector(vec)
|
||
|
|
||
|
|
||
|
def _populateExtras(self, file):
|
||
|
"""
|
||
|
Populate some of the extra fields unique to processing TSX data.
|
||
|
In the future, other sensors may need this information as well,
|
||
|
and a re-organization may be necessary.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
self.dcpoly = np.mean(file['dc_estimate_coeffs'][:], axis=0)
|
||
|
|
||
|
def extractImage(self):
|
||
|
import numpy as np
|
||
|
import h5py
|
||
|
|
||
|
self.parse()
|
||
|
|
||
|
fid = h5py.File(self.hdf5, 'r')
|
||
|
|
||
|
si = fid['s_i']
|
||
|
sq = fid['s_q']
|
||
|
|
||
|
nLines = si.shape[0]
|
||
|
spectralShift = 2 * self.frame.getInstrument().getRangePixelSize() / self.frame.getInstrument().getRadarWavelength()
|
||
|
spectralShift -= np.floor(spectralShift)
|
||
|
phsShift = np.exp(-1j * 2 * np.pi * spectralShift * np.arange(si.shape[1]))
|
||
|
with open(self.output, 'wb') as fout:
|
||
|
for ii in range(nLines):
|
||
|
line = (si[ii,:] + 1j*sq[ii,:])
|
||
|
if self.applySlantRangePhase:
|
||
|
line *= phsShift
|
||
|
line.astype(np.complex64).tofile(fout)
|
||
|
|
||
|
fid.close()
|
||
|
|
||
|
slcImage = isceobj.createSlcImage()
|
||
|
slcImage.setFilename(self.output)
|
||
|
slcImage.setXmin(0)
|
||
|
slcImage.setXmax(self.frame.getNumberOfSamples())
|
||
|
slcImage.setWidth(self.frame.getNumberOfSamples())
|
||
|
slcImage.setAccessMode('r')
|
||
|
self.frame.setImage(slcImage)
|
||
|
|
||
|
def extractDoppler(self):
|
||
|
"""
|
||
|
Return the doppler centroid as defined in the HDF5 file.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
quadratic = {}
|
||
|
|
||
|
rangePixelSize = self.frame.getInstrument().getRangePixelSize()
|
||
|
rt0 = self.frame.getStartingRange() / (2 * Const.c)
|
||
|
rt1 = rt0 +((self.frame.getNumberOfSamples()-1)*rangePixelSize) / (2 * Const.c)
|
||
|
|
||
|
|
||
|
####insarApp style
|
||
|
quadratic['a'] = np.polyval( self.dcpoly, 0.5 * (rt0 + rt1)) / self.frame.PRF
|
||
|
quadratic['b'] = 0.
|
||
|
quadratic['c'] = 0.
|
||
|
|
||
|
|
||
|
####For roiApp more accurate
|
||
|
####Convert stuff to pixel wise coefficients
|
||
|
x = np.linspace(rt0, rt1, num=len(self.dcpoly)+1)
|
||
|
pix = np.linspace(0, self.frame.getNumberOfSamples(), num=len(self.dcpoly)+1)
|
||
|
evals = np.polyval(self.dcpoly, x)
|
||
|
fit = np.polyfit(pix, evals, len(self.dcpoly)-1)
|
||
|
self.frame._dopplerVsPixel = list(fit[::-1])
|
||
|
print('Doppler Fit: ', self.frame._dopplerVsPixel)
|
||
|
|
||
|
return quadratic
|