修复RTPC算法的切片错误

main
陈增辉 2024-12-01 14:44:58 +08:00
parent 7bf440dc70
commit 798e02352f
3 changed files with 334 additions and 281 deletions

View File

@ -26,14 +26,15 @@
#define MATPLOTDRAWIMAGE
#define PI_180 180/3.141592653589793238462643383279
#define T180_PI 3.141592653589793238462643383279/180
#define r2d 180/3.141592653589793238462643383279
#define d2r 3.141592653589793238462643383279/180
#define LIGHTSPEED 299792458
#define PRECISIONTOLERANCE 1e-9
#define Radians2Degrees(Radians) Radians*PI_180
#define Degrees2Radians(Degrees) Degrees*T180_PI
#define EARTHWE 0.000072292115
#define PI 3.141592653589793238462643383279
#define earthRoute 0.000072292115
@ -43,11 +44,10 @@
const std::complex<double> imagI(0, 1);
const double PI = 3.141592653589793238462643383279;
const double epsilon = 0.000000000000001;
const double pi = 3.14159265358979323846;
const double d2r = pi / 180;
const double r2d = 180 / pi;
const double a = 6378137.0; //椭球长半轴
const double ae = 6378137.0; //椭球长半轴

View File

@ -8,7 +8,7 @@
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuComplex.h>
#include "BaseConstVariable.h"
#include "GPUTool.cuh"
@ -20,7 +20,7 @@
// 定义参数
__device__ cuComplex cuCexpf(cuComplex x)
__device__ cuComplex cuCexpf(cuComplex x)
{
float factor = exp(x.x);
return make_cuComplex(factor * cos(x.y), factor * sin(x.y));
@ -28,136 +28,135 @@
// 定义仿真所需参数
__device__ float GPU_getSigma0dB(CUDASigmaParam param,float theta) {
return param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6);
__device__ float GPU_getSigma0dB(CUDASigmaParam param, float theta) {
return param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6);
}
__device__ CUDAVector GPU_VectorAB(CUDAVector A, CUDAVector B) {
CUDAVector C;
C.x = B.x - A.x;
C.y = B.y - A.y;
C.z = B.z - A.z;
return C;
__device__ CUDAVector GPU_VectorAB(CUDAVector A, CUDAVector B) {
CUDAVector C;
C.x = B.x - A.x;
C.y = B.y - A.y;
C.z = B.z - A.z;
return C;
}
__device__ float GPU_VectorNorm2(CUDAVector A) {
return sqrtf(A.x * A.x + A.y * A.y + A.z * A.z);
}
__device__ float GPU_dotVector(CUDAVector A, CUDAVector B) {
return A.x * B.x + A.y * B.y + A.z * B.z;
__device__ float GPU_VectorNorm2(CUDAVector A) {
return sqrtf(A.x * A.x + A.y * A.y + A.z * A.z);
}
__device__ float GPU_CosAngle_VectorA_VectorB(CUDAVector A, CUDAVector B) {
return GPU_dotVector(A, B) / (GPU_VectorNorm2(A)*GPU_VectorNorm2(B));
__device__ float GPU_dotVector(CUDAVector A, CUDAVector B) {
return A.x * B.x + A.y * B.y + A.z * B.z;
}
__device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal(float RstX, float RstY, float RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ
) {
CUDAVectorEllipsoidal result{0,0,-1};
float Xst = -1 * RstX; // 卫星 --> 地面
float Yst = -1 * RstY;
float Zst = -1 * RstZ;
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// 天线指向在天线坐标系下的值
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
// 计算theta 与 phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float YsinTheta = Yant / sinf(ThetaAnt);
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
result.theta = ThetaAnt;
result.phi = PhiAnt;
result.pho = Norm;
return result;
__device__ float GPU_CosAngle_VectorA_VectorB(CUDAVector A, CUDAVector B) {
return GPU_dotVector(A, B) / (GPU_VectorNorm2(A) * GPU_VectorNorm2(B));
}
/**
__device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal(float RstX, float RstY, float RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ
) {
CUDAVectorEllipsoidal result{ 0,0,-1 };
float Xst = -1 * RstX; // 卫星 --> 地面
float Yst = -1 * RstY;
float Zst = -1 * RstZ;
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// 天线指向在天线坐标系下的值
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
// 计算theta 与 phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float YsinTheta = Yant / sinf(ThetaAnt);
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
result.theta = ThetaAnt;
result.phi = PhiAnt;
result.pho = Norm;
return result;
}
/**
天线方向图插值方法以双线性插值算法为基础由theta与phi组合得到的矩阵图为基础数据通过插值计算的方法获取目标点的数据。
其中行是theta、列是phi
*/
__device__ float GPU_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float searththeta, float searchphi) {
float stheta = searththeta;
float sphi = searchphi;
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
__device__ float GPU_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float searththeta, float searchphi) {
float stheta = searththeta;
float sphi = searchphi;
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
return 0;
}
else {
float x = stheta;
float y = sphi;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
return 0;
}
else {
float x = stheta;
float y = sphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
z11 = powf(10, z11 / 10);
z12 = powf(10, z12 / 10);
z21 = powf(10, z21 / 10);
z22 = powf(10, z22 / 10);
z11 = powf(10, z11 / 10);
z12 = powf(10, z12 / 10);
z21 = powf(10, z21 / 10);
z22 = powf(10, z22 / 10);
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
return GainValue;
}
}
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
return GainValue;
}
}
__device__ cuComplex GPU_calculationEcho(float sigma0, float TransAnt, float ReciveAnt,
float localangle, float R, float slopeangle, float Pt, float lamda) {
float r = R;
float amp = Pt * TransAnt * ReciveAnt;
amp = amp * sigma0;
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // 反射强度
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
return echo;
}
__device__ cuComplex GPU_calculationEcho(float sigma0, float TransAnt, float ReciveAnt,
float localangle, float R, float slopeangle,float Pt, float lamda ) {
float r = R;
float amp = Pt * TransAnt * ReciveAnt;
amp = amp * sigma0;
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // 反射强度
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
return echo;
}
__global__ void CUDA_DistanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz,float *R, long len) {
__global__ void CUDA_DistanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
R[idx] = sqrtf(powf(Ax[idx]-Bx[idx], 2) + powf(Ay[idx] - By[idx], 2) + powf(Az[idx] - Bz[idx], 2));
R[idx] = sqrtf(powf(Ax[idx] - Bx[idx], 2) + powf(Ay[idx] - By[idx], 2) + powf(Az[idx] - Bz[idx], 2));
}
}
@ -176,15 +175,15 @@ __global__ void CUDA_make_VectorA_B(float sX, float sY, float sZ, float* tX, flo
RstZ[idx] = sZ - tZ[idx];
}
}
__global__ void CUDA_Norm_Vector(float* Vx, float* Vy, float* Vz,float *R, long len) {
__global__ void CUDA_Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
R[idx] = sqrtf(powf(Vx[idx],2)+powf(Vy[idx],2)+powf(Vz[idx], 2));
R[idx] = sqrtf(powf(Vx[idx], 2) + powf(Vy[idx], 2) + powf(Vz[idx], 2));
}
}
__global__ void CUDA_cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos,long len) {
__global__ void CUDA_cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float tAx = Ax[idx];
@ -193,88 +192,53 @@ __global__ void CUDA_cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx,
float tBx = Bx[idx];
float tBy = By[idx];
float tBz = Bz[idx];
float AR = sqrtf(powf(tAx,2) + powf(tAy,2) + powf(tAz,2));
float BR = sqrtf(powf(tBx,2) + powf(tBy,2) + powf(tBz,2));
float AR = sqrtf(powf(tAx, 2) + powf(tAy, 2) + powf(tAz, 2));
float BR = sqrtf(powf(tBx, 2) + powf(tBy, 2) + powf(tBz, 2));
float dotAB = tAx * tBx + tAy * tBy + tAz * tBz;
float result =acosf( dotAB / (AR * BR));
float result = acosf(dotAB / (AR * BR));
anglecos[idx] = result;
}
}
__global__ void CUDA_SatelliteAntDirectNormal(float* RstX,float* RstY,float* RstZ,
float antXaxisX,float antXaxisY,float antXaxisZ,
float antYaxisX,float antYaxisY,float antYaxisZ,
float antZaxisX,float antZaxisY,float antZaxisZ,
float antDirectX,float antDirectY,float antDirectZ,
float* thetaAnt,float* phiAnt
__global__ void CUDA_SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* thetaAnt, float* phiAnt
, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float Xst = -1*RstX[idx]; // 卫星 --> 地面
float Yst = -1*RstY[idx];
float Zst = -1*RstZ[idx];
float AntXaxisX=antXaxisX ;
float AntXaxisY=antXaxisY ;
float AntXaxisZ=antXaxisZ ;
float AntYaxisX=antYaxisX ;
float AntYaxisY=antYaxisY ;
float AntYaxisZ=antYaxisZ ;
float AntZaxisX=antZaxisX ;
float AntZaxisY=antZaxisY ;
float AntZaxisZ=antZaxisZ ;
float Xst = -1 * RstX[idx]; // 卫星 --> 地面
float Yst = -1 * RstY[idx];
float Zst = -1 * RstZ[idx];
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// 天线指向在天线坐标系下的值
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * ( AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * ( AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / ( AntXaxisX * ( AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * ( AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * ( AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * ( AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * ( AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / ( AntXaxisX * ( AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * ( AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * ( AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * ( AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * ( AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / ( AntXaxisX * ( AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * ( AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * ( AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
// 计算theta 与 phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float YsinTheta = Yant / sinf(ThetaAnt);
float PhiAnt = (YsinTheta/abs(YsinTheta)) * acosf( Xant / (Norm * sinf(ThetaAnt)));
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
thetaAnt[idx] = ThetaAnt;
phiAnt[idx] = PhiAnt;
}
}
__global__ void CUDA_calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
float* localangle, float* R,float* slopeangle,
float nearRange, float Fs,float Pt,float lamda,long FreqIDmax,
cuComplex* echoArr , long* FreqID,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
float amp = Pt * TransAnt[idx] * ReciveAnt[idx];
amp= amp * sigma0[idx];
amp = amp / (powf(4* LAMP_CUDA_PI,2)*powf(r,4)); // 反射强度
// 处理相位
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi) ;
cuComplex echophiexp = cuCexpf(echophi);
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
long timeID = floorf(timeR);
if (timeID < 0 || timeID >= FreqIDmax) {
timeID = 0;
amp = 0;
}
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
echoArr[idx] = echo;
}
}
__global__ void CUDA_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float* searththeta, float* searchphi,float* searchantpattern,
float* searththeta, float* searchphi, float* searchantpattern,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
@ -324,31 +288,36 @@ __global__ void CUDA_BillerInterpAntPattern(float* antpattern,
}
__global__ void CUDA_Test_HelloWorld(float a, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
printf("\nidx:\t %d %d \n", idx, len);
}
__global__ void CUDA_RTPC_Kernel(
__global__ void CUDA_RTPC(
float antPx, float antPy, float antPz,// 天线坐标
float antXaxisX, float antXaxisY, float antXaxisZ, // 天线坐标系
float antYaxisX, float antYaxisY, float antYaxisZ, //
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,// 天线指向
float* demx, float* demy, float* demz, long* demcls, // 地面坐标
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,// 地面坡度
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, long Tthetapoints, long Tphipoints,// 天线方向图相关
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, long Rthetapoints, long Rphipoints,// 天线方向图相关
float antDirectX, float antDirectY, float antDirectZ,
float* demx, float* demy, float* demz, long* demcls,
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, long Tthetapoints, long Tphipoints,
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, long Rthetapoints, long Rphipoints,
float lamda, float fs, float nearrange, float Pt, long Freqnumbers, // 参数
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen,// 地表覆盖类型-sigma插值对应函数-ulaby
cuComplex* outecho, long* d_echoAmpFID,
long len
) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
cuComplex* outecho, int* d_echoAmpFID,
int linecount,int plusepoint) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
//printf("\nidx:\t %d %d %d\n", idx, linecount, plusepoint);
if (idx < linecount* plusepoint) {
long clsid = demcls[idx];
CUDAVector Rs{ antPx,antPy,antPz };
CUDAVector Rt{ demx[idx],demy[idx],demz[idx] };
CUDAVector Rst{ Rs.x - Rt.x,Rs.y - Rt.y,Rs.z - Rt.z };
CUDAVector Vslope{ demslopex[idx],demslopey[idx],demslopez[idx] };
float R = GPU_VectorNorm2(Rst); // 斜距
float slopeangle = demslopeangle[idx];
CUDAVectorEllipsoidal Rtanttheta = GPU_SatelliteAntDirectNormal( // 地面目标在天线的位置
Rst.x, Rst.y, Rst.z,
antXaxisX, antXaxisY, antXaxisZ,
@ -356,21 +325,23 @@ __global__ void CUDA_RTPC_Kernel(
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ);
float localangle=GPU_CosAngle_VectorA_VectorB(Rst, Vslope); // 距地入射角
float sigma = GPU_getSigma0dB(sigma0Paramslist[clsid], localangle);
float localangle = GPU_CosAngle_VectorA_VectorB(Rst, Vslope); // 距地入射角
float sigma = GPU_getSigma0dB(sigma0Paramslist[clsid], localangle * r2d);
sigma = powf(10.0, sigma / 10.0);// 后向散射系数
//printf("\ntheta: %f\t,%f ,%f ,%f ,%f ,%f ,%f \n", localangle * r2d, sigma0Paramslist[clsid].p1, sigma0Paramslist[clsid].p2, sigma0Paramslist[clsid].p3,
// sigma0Paramslist[clsid].p4, sigma0Paramslist[clsid].p5, sigma0Paramslist[clsid].p6);
// 发射方向图
float transPattern = GPU_BillerInterpAntPattern(Tantpattern,
Tstarttheta, Tstartphi, Tdtheta, Tdphi,Tthetapoints, Tphipoints,
Rtanttheta.theta, Rtanttheta.phi);
Tstarttheta, Tstartphi, Tdtheta, Tdphi, Tthetapoints, Tphipoints,
Rtanttheta.theta, Rtanttheta.phi) * r2d;
// 接收方向图
float receivePattern = GPU_BillerInterpAntPattern(Rantpattern,
Rstarttheta, Rstartphi, Rdtheta, Rdphi, Rthetapoints, Rphipoints,
Rtanttheta.theta, Rtanttheta.phi);
Rtanttheta.theta, Rtanttheta.phi) * r2d;
// 计算振幅、相位
float amp = Pt * transPattern * receivePattern * sigma / (powf(4 * LAMP_CUDA_PI, 2) * powf(R, 4));
float amp = Pt * transPattern * receivePattern * sigma * (1 / cos(slopeangle) * sin(localangle));
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(R, 4));
float phi = (-4 * LAMP_CUDA_PI / lamda) * R;
// 构建回波
@ -381,7 +352,7 @@ __global__ void CUDA_RTPC_Kernel(
if (timeID < 0 || timeID >= Freqnumbers) {
timeID = 0;
amp = 0;
}
else {}
@ -391,6 +362,8 @@ __global__ void CUDA_RTPC_Kernel(
outecho[idx] = echo;
d_echoAmpFID[idx] = timeID;
}
}
@ -402,48 +375,111 @@ void checkCudaError(cudaError_t err, const char* msg) {
}
}
// 主机参数内存声明
extern "C" void* mallocCUDAHost( long memsize) {
extern "C" void* mallocCUDAHost(long memsize) {
void* ptr;
cudaMallocHost(&ptr, memsize);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("mallocCUDAHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
return ptr;
}
// 主机参数内存释放
extern "C" void FreeCUDAHost(void* ptr) {
cudaFreeHost(ptr);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDAHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
}
// GPU参数内存声明
extern "C" void* mallocCUDADevice( long memsize) {
extern "C" void* mallocCUDADevice(long memsize) {
void* ptr;
cudaMalloc(&ptr, memsize);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("mallocCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
return ptr;
}
// GPU参数内存释放
extern "C" void FreeCUDADevice(void* ptr) {
cudaFree(ptr);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
}
// GPU 内存数据转移
extern "C" void HostToDevice(void* hostptr, void* deviceptr, long memsize) {
cudaMemcpy(deviceptr, hostptr, memsize, cudaMemcpyHostToDevice);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("HostToDevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
}
extern "C" void DeviceToHost(void* hostptr, void* deviceptr, long memsize) {
cudaMemcpy(hostptr, deviceptr, memsize, cudaMemcpyDeviceToHost);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("DeviceToHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
}
extern "C" void distanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R,long len) {
extern "C" void CUDATestHelloWorld(float a,long len) {
// 设置 CUDA 核函数的网格和块的尺寸
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_DistanceAB << <blockSize, numBlocks >> > ( Ax, Ay, Az, Bx, By, Bz, R, len);
CUDA_Test_HelloWorld << <blockSize, numBlocks >> > (a, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void distanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) {
// 设置 CUDA 核函数的网格和块的尺寸
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_DistanceAB << <blockSize, numBlocks >> > (Ax, Ay, Az, Bx, By, Bz, R, len);
}
extern "C" void BdistanceAs(float* Ax, float* Ay, float* Az, float Bx, float By, float Bz, float* R, long len) {
@ -460,7 +496,7 @@ extern "C" void make_VectorA_B(float sX, float sY, float sZ, float* tX, float* t
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_make_VectorA_B << <blockSize, numBlocks >> > (sX, sY, sZ,tX, tY, tZ, RstX,RstY, RstZ, len);
CUDA_make_VectorA_B << <blockSize, numBlocks >> > (sX, sY, sZ, tX, tY, tZ, RstX, RstY, RstZ, len);
cudaDeviceSynchronize();
}
@ -469,7 +505,7 @@ extern "C" void Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len)
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_Norm_Vector << <blockSize, numBlocks >> > (Vx,Vy,Vz,R, len);
CUDA_Norm_Vector << <blockSize, numBlocks >> > (Vx, Vy, Vz, R, len);
cudaDeviceSynchronize();
}
@ -480,7 +516,7 @@ extern "C" void cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float
CUDA_cosAngle_VA_AB << <blockSize, numBlocks >> > (Ax, Ay, Az, Bx, By, Bz, anglecos, len);
cudaDeviceSynchronize();
}
extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
@ -492,79 +528,91 @@ extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_SatelliteAntDirectNormal << <blockSize, numBlocks >> > ( RstX, RstY, RstZ,
antXaxisX, antXaxisY, antXaxisZ,
antYaxisX, antYaxisY, antYaxisZ,
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,
thetaAnt, phiAnt
, len);
CUDA_SatelliteAntDirectNormal << <blockSize, numBlocks >> > (RstX, RstY, RstZ,
antXaxisX, antXaxisY, antXaxisZ,
antYaxisX, antYaxisY, antYaxisZ,
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,
thetaAnt, phiAnt
, len);
cudaDeviceSynchronize();
}
}
extern "C" void calculationEcho(float* sigma0,float* TransAnt,float* ReciveAnt,
float* localangle,float* R, float* slopeangle,
float nearRange,float Fs, float pt, float lamda, long FreqIDmax,
cuComplex* echoAmp,long* FreqID,
long len)
{
extern "C" void CUDARTPCPRF(float antPx, long len) {
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_calculationEcho << <blockSize, numBlocks >> > ( sigma0, TransAnt,ReciveAnt,
localangle, R, slopeangle,
nearRange, Fs, pt, lamda, FreqIDmax,
echoAmp, FreqID,
len);
printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n", blockSize, numBlocks);
CUDA_Test_HelloWorld << <blockSize, numBlocks >> > (antPx, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDA_RTPC_SiglePRF(
float antPx, float antPy, float antPZ,// 天线坐标
float antXaxisX, float antXaxisY, float antXaxisZ, // 天线坐标系
float antYaxisX, float antYaxisY, float antYaxisZ, //
float antPx, float antPy, float antPZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,// 天线指向
float* demx, float* demy, float* demz, long* demcls, // 地面坐标
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,// 地面坡度
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, long Tthetapoints, long Tphipoints,// 天线方向图相关
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, long Rthetapoints, long Rphipoints,// 天线方向图相关
float lamda, float fs, float nearrange, float Pt, long Freqnumbers, // 参数
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen,// 地表覆盖类型-sigma插值对应函数-ulaby
cuComplex* outecho, long* d_echoAmpFID,
long len
) {
float antDirectX, float antDirectY, float antDirectZ,
float* demx, float* demy, float* demz, long* demcls,
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, int Tthetapoints, int Tphipoints,
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, int Rthetapoints, int Rphipoints,
float lamda, float fs, float nearrange, float Pt, int Freqnumbers,
CUDASigmaParam* sigma0Paramslist, int sigmaparamslistlen,
cuComplex* outecho, int* d_echoAmpFID,
int linecount,int colcount) {
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_RTPC_Kernel<<<blockSize,numBlocks>>>(
antPx, antPy, antPZ,// 天线坐标
antXaxisX, antXaxisY, antXaxisZ, // 天线坐标系
antYaxisX, antYaxisY, antYaxisZ, //
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,// 天线指向
demx, demy, demz, demcls, // 地面坐标
demslopex, demslopey, demslopez, demslopeangle,// 地面坡度
Tantpattern, Tstarttheta, Tstartphi, Tdtheta, Tdphi, Tthetapoints, Tphipoints,// 天线方向图相关
Rantpattern, Rstarttheta, Rstartphi, Rdtheta, Rdphi, Rthetapoints, Rphipoints,// 天线方向图相关
lamda, fs, nearrange, Pt, Freqnumbers, // 参数
sigma0Paramslist, sigmaparamslistlen,// 地表覆盖类型-sigma插值对应函数-ulaby
outecho, d_echoAmpFID,
len
);
cudaDeviceSynchronize();
int numBlocks = (linecount* colcount + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n",blockSize,numBlocks);
// 调用 CUDA 核函数 CUDA_RTPC_Kernel
CUDA_RTPC << <numBlocks, blockSize >> > (
antPx, antPy, antPZ,// 天线坐标
antXaxisX, antXaxisY, antXaxisZ, // 天线坐标系
antYaxisX, antYaxisY, antYaxisZ, //
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,// 天线指向
demx, demy, demz,
demcls, // 地面坐标
demslopex, demslopey, demslopez, demslopeangle,// 地面坡度
Tantpattern, Tstarttheta, Tstartphi, Tdtheta, Tdphi, Tthetapoints, Tphipoints,// 天线方向图相关
Rantpattern, Rstarttheta, Rstartphi, Rdtheta, Rdphi, Rthetapoints, Rphipoints,// 天线方向图相关
lamda, fs, nearrange, Pt, Freqnumbers, // 参数
sigma0Paramslist, sigmaparamslistlen,// 地表覆盖类型-sigma插值对应函数-ulaby
outecho, d_echoAmpFID,
linecount, colcount
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
#endif
#endif

View File

@ -7,6 +7,8 @@
#include <cublas_v2.h>
#include <cuComplex.h>
#define __CUDADEBUG__
// ĬÈÏÏÔ´æ·Ö²¼
@ -56,25 +58,28 @@ extern "C" void make_VectorA_B(float sX, float sY, float sZ, float* tX, float* t
extern "C" void Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long member);
extern "C" void cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len);
extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ, float antXaxisX, float antXaxisY, float antXaxisZ, float antYaxisX, float antYaxisY, float antYaxisZ, float antZaxisX, float antZaxisY, float antZaxisZ, float antDirectX, float antDirectY, float antDirectZ, float* thetaAnt, float* phiAnt, long len);
extern "C" void calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,float* localangle, float* R, float* slopeangle,float nearRange, float Fs, float pt, float lamda, long FreqIDmax,cuComplex* echoAmp, long* FreqID, long len);
extern "C" void CUDA_RTPC_SiglePRF(
float antPx, float antPy, float antPZ,// 天线坐标
float antXaxisX, float antXaxisY, float antXaxisZ, // 天线坐标系
float antYaxisX, float antYaxisY, float antYaxisZ, //
float antPx, float antPy, float antPZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,// 天线指向
float* demx, float* demy, float* demz,long* demcls, // 地面坐标
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,// 地面坡度
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, long Tthetapoints, long Tphipoints,// 天线方向图相关
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, long Rthetapoints, long Rphipoints,// 天线方向图相关
float lamda, float fs, float nearrange, float Pt, long Freqnumbers, // 参数
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen,// 地表覆盖类型-sigma插值对应函数-ulaby
cuComplex* outecho,long* d_echoAmpFID,
long len
float antDirectX, float antDirectY, float antDirectZ,
float* demx, float* demy, float* demz, long* demcls,
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, int Tthetapoints, int Tphipoints,
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, int Rthetapoints, int Rphipoints,
float lamda, float fs, float nearrange, float Pt, int Freqnumbers,
CUDASigmaParam* sigma0Paramslist, int sigmaparamslistlen,
cuComplex* outecho, int* d_echoAmpFID,
int linecount, int colcount
);
extern "C" void CUDARTPCPRF(float antPx, long len);
extern "C" void CUDATestHelloWorld(float a, long len);
#endif
#endif